| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulc1cncf.1 |
|
| 2 |
|
mulcl |
|
| 3 |
2 1
|
fmptd |
|
| 4 |
|
simprr |
|
| 5 |
|
simpl |
|
| 6 |
|
simprl |
|
| 7 |
|
mulcn2 |
|
| 8 |
4 5 6 7
|
syl3anc |
|
| 9 |
|
fvoveq1 |
|
| 10 |
9
|
breq1d |
|
| 11 |
10
|
anbi1d |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
fvoveq1d |
|
| 14 |
13
|
breq1d |
|
| 15 |
11 14
|
imbi12d |
|
| 16 |
15
|
ralbidv |
|
| 17 |
16
|
rspcv |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
subid |
|
| 20 |
19
|
ad2antrr |
|
| 21 |
20
|
abs00bd |
|
| 22 |
|
simprll |
|
| 23 |
22
|
rpgt0d |
|
| 24 |
21 23
|
eqbrtrd |
|
| 25 |
24
|
biantrurd |
|
| 26 |
|
simprr |
|
| 27 |
|
oveq2 |
|
| 28 |
|
ovex |
|
| 29 |
27 1 28
|
fvmpt |
|
| 30 |
26 29
|
syl |
|
| 31 |
|
simplrl |
|
| 32 |
|
oveq2 |
|
| 33 |
|
ovex |
|
| 34 |
32 1 33
|
fvmpt |
|
| 35 |
31 34
|
syl |
|
| 36 |
30 35
|
oveq12d |
|
| 37 |
36
|
fveq2d |
|
| 38 |
37
|
breq1d |
|
| 39 |
25 38
|
imbi12d |
|
| 40 |
39
|
anassrs |
|
| 41 |
40
|
ralbidva |
|
| 42 |
18 41
|
sylibrd |
|
| 43 |
42
|
anassrs |
|
| 44 |
43
|
reximdva |
|
| 45 |
44
|
rexlimdva |
|
| 46 |
8 45
|
mpd |
|
| 47 |
46
|
ralrimivva |
|
| 48 |
|
ssid |
|
| 49 |
|
elcncf2 |
|
| 50 |
48 48 49
|
mp2an |
|
| 51 |
3 47 50
|
sylanbrc |
|