Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcan1g | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulcl | |
|
| 2 | 1 | 3adant3 | |
| 3 | mulcl | |
|
| 4 | 3 | 3adant2 | |
| 5 | 2 4 | subeq0ad | |
| 6 | simp1 | |
|
| 7 | subcl | |
|
| 8 | 7 | 3adant1 | |
| 9 | 6 8 | mul0ord | |
| 10 | subdi | |
|
| 11 | 10 | eqeq1d | |
| 12 | subeq0 | |
|
| 13 | 12 | 3adant1 | |
| 14 | 13 | orbi2d | |
| 15 | 9 11 14 | 3bitr3d | |
| 16 | 5 15 | bitr3d | |