Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Reciprocals
mulcan2ad
Metamath Proof Explorer
Description: Cancellation of a nonzero factor on the right in an equation. One-way
deduction form of mulcan2d . (Contributed by David Moews , 28-Feb-2017)
Ref
Expression
Hypotheses
mulcanad.1
⊢ φ → A ∈ ℂ
mulcanad.2
⊢ φ → B ∈ ℂ
mulcanad.3
⊢ φ → C ∈ ℂ
mulcanad.4
⊢ φ → C ≠ 0
mulcan2ad.5
⊢ φ → A ⁢ C = B ⁢ C
Assertion
mulcan2ad
⊢ φ → A = B
Proof
Step
Hyp
Ref
Expression
1
mulcanad.1
⊢ φ → A ∈ ℂ
2
mulcanad.2
⊢ φ → B ∈ ℂ
3
mulcanad.3
⊢ φ → C ∈ ℂ
4
mulcanad.4
⊢ φ → C ≠ 0
5
mulcan2ad.5
⊢ φ → A ⁢ C = B ⁢ C
6
1 2 3 4
mulcan2d
⊢ φ → A ⁢ C = B ⁢ C ↔ A = B
7
5 6
mpbid
⊢ φ → A = B