Metamath Proof Explorer


Theorem mulcan2d

Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulcand.1 φ A
mulcand.2 φ B
mulcand.3 φ C
mulcand.4 φ C 0
Assertion mulcan2d φ A C = B C A = B

Proof

Step Hyp Ref Expression
1 mulcand.1 φ A
2 mulcand.2 φ B
3 mulcand.3 φ C
4 mulcand.4 φ C 0
5 1 3 mulcomd φ A C = C A
6 2 3 mulcomd φ B C = C B
7 5 6 eqeq12d φ A C = B C C A = C B
8 1 2 3 4 mulcand φ C A = C B A = B
9 7 8 bitrd φ A C = B C A = B