Metamath Proof Explorer


Theorem mulcand

Description: Cancellation law for multiplication. Theorem I.7 of Apostol p. 18. (Contributed by NM, 26-Jan-1995) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulcand.1 φ A
mulcand.2 φ B
mulcand.3 φ C
mulcand.4 φ C 0
Assertion mulcand φ C A = C B A = B

Proof

Step Hyp Ref Expression
1 mulcand.1 φ A
2 mulcand.2 φ B
3 mulcand.3 φ C
4 mulcand.4 φ C 0
5 recex C C 0 x C x = 1
6 3 4 5 syl2anc φ x C x = 1
7 oveq2 C A = C B x C A = x C B
8 simprl φ x C x = 1 x
9 3 adantr φ x C x = 1 C
10 8 9 mulcomd φ x C x = 1 x C = C x
11 simprr φ x C x = 1 C x = 1
12 10 11 eqtrd φ x C x = 1 x C = 1
13 12 oveq1d φ x C x = 1 x C A = 1 A
14 1 adantr φ x C x = 1 A
15 8 9 14 mulassd φ x C x = 1 x C A = x C A
16 14 mulid2d φ x C x = 1 1 A = A
17 13 15 16 3eqtr3d φ x C x = 1 x C A = A
18 12 oveq1d φ x C x = 1 x C B = 1 B
19 2 adantr φ x C x = 1 B
20 8 9 19 mulassd φ x C x = 1 x C B = x C B
21 19 mulid2d φ x C x = 1 1 B = B
22 18 20 21 3eqtr3d φ x C x = 1 x C B = B
23 17 22 eqeq12d φ x C x = 1 x C A = x C B A = B
24 7 23 syl5ib φ x C x = 1 C A = C B A = B
25 6 24 rexlimddv φ C A = C B A = B
26 oveq2 A = B C A = C B
27 25 26 impbid1 φ C A = C B A = B