Metamath Proof Explorer


Theorem mulcanpi

Description: Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996) (Revised by Mario Carneiro, 10-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulcanpi A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C

Proof

Step Hyp Ref Expression
1 mulclpi A 𝑵 B 𝑵 A 𝑵 B 𝑵
2 eleq1 A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 C 𝑵
3 1 2 syl5ib A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 C 𝑵
4 3 imp A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 C 𝑵
5 dmmulpi dom 𝑵 = 𝑵 × 𝑵
6 0npi ¬ 𝑵
7 5 6 ndmovrcl A 𝑵 C 𝑵 A 𝑵 C 𝑵
8 simpr A 𝑵 C 𝑵 C 𝑵
9 4 7 8 3syl A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 C 𝑵
10 mulpiord A 𝑵 B 𝑵 A 𝑵 B = A 𝑜 B
11 10 adantr A 𝑵 B 𝑵 C 𝑵 A 𝑵 B = A 𝑜 B
12 mulpiord A 𝑵 C 𝑵 A 𝑵 C = A 𝑜 C
13 12 adantlr A 𝑵 B 𝑵 C 𝑵 A 𝑵 C = A 𝑜 C
14 11 13 eqeq12d A 𝑵 B 𝑵 C 𝑵 A 𝑵 B = A 𝑵 C A 𝑜 B = A 𝑜 C
15 pinn A 𝑵 A ω
16 pinn B 𝑵 B ω
17 pinn C 𝑵 C ω
18 elni2 A 𝑵 A ω A
19 18 simprbi A 𝑵 A
20 nnmcan A ω B ω C ω A A 𝑜 B = A 𝑜 C B = C
21 20 biimpd A ω B ω C ω A A 𝑜 B = A 𝑜 C B = C
22 19 21 sylan2 A ω B ω C ω A 𝑵 A 𝑜 B = A 𝑜 C B = C
23 22 ex A ω B ω C ω A 𝑵 A 𝑜 B = A 𝑜 C B = C
24 15 16 17 23 syl3an A 𝑵 B 𝑵 C 𝑵 A 𝑵 A 𝑜 B = A 𝑜 C B = C
25 24 3exp A 𝑵 B 𝑵 C 𝑵 A 𝑵 A 𝑜 B = A 𝑜 C B = C
26 25 com4r A 𝑵 A 𝑵 B 𝑵 C 𝑵 A 𝑜 B = A 𝑜 C B = C
27 26 pm2.43i A 𝑵 B 𝑵 C 𝑵 A 𝑜 B = A 𝑜 C B = C
28 27 imp31 A 𝑵 B 𝑵 C 𝑵 A 𝑜 B = A 𝑜 C B = C
29 14 28 sylbid A 𝑵 B 𝑵 C 𝑵 A 𝑵 B = A 𝑵 C B = C
30 9 29 sylan2 A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C
31 30 exp32 A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C
32 31 imp4b A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C
33 32 pm2.43i A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C
34 33 ex A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C
35 oveq2 B = C A 𝑵 B = A 𝑵 C
36 34 35 impbid1 A 𝑵 B 𝑵 A 𝑵 B = A 𝑵 C B = C