Metamath Proof Explorer


Theorem mulclpi

Description: Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)

Ref Expression
Assertion mulclpi A 𝑵 B 𝑵 A 𝑵 B 𝑵

Proof

Step Hyp Ref Expression
1 mulpiord A 𝑵 B 𝑵 A 𝑵 B = A 𝑜 B
2 pinn A 𝑵 A ω
3 pinn B 𝑵 B ω
4 nnmcl A ω B ω A 𝑜 B ω
5 2 3 4 syl2an A 𝑵 B 𝑵 A 𝑜 B ω
6 elni2 B 𝑵 B ω B
7 6 simprbi B 𝑵 B
8 7 adantl A 𝑵 B 𝑵 B
9 3 adantl A 𝑵 B 𝑵 B ω
10 2 adantr A 𝑵 B 𝑵 A ω
11 elni2 A 𝑵 A ω A
12 11 simprbi A 𝑵 A
13 12 adantr A 𝑵 B 𝑵 A
14 nnmordi B ω A ω A B A 𝑜 A 𝑜 B
15 9 10 13 14 syl21anc A 𝑵 B 𝑵 B A 𝑜 A 𝑜 B
16 8 15 mpd A 𝑵 B 𝑵 A 𝑜 A 𝑜 B
17 16 ne0d A 𝑵 B 𝑵 A 𝑜 B
18 elni A 𝑜 B 𝑵 A 𝑜 B ω A 𝑜 B
19 5 17 18 sylanbrc A 𝑵 B 𝑵 A 𝑜 B 𝑵
20 1 19 eqeltrd A 𝑵 B 𝑵 A 𝑵 B 𝑵