Metamath Proof Explorer


Theorem mulclpr

Description: Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 13-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulclpr A 𝑷 B 𝑷 A 𝑷 B 𝑷

Proof

Step Hyp Ref Expression
1 df-mp 𝑷 = w 𝑷 , v 𝑷 x | y w z v x = y 𝑸 z
2 mulclnq y 𝑸 z 𝑸 y 𝑸 z 𝑸
3 ltmnq h 𝑸 f < 𝑸 g h 𝑸 f < 𝑸 h 𝑸 g
4 mulcomnq x 𝑸 y = y 𝑸 x
5 mulclprlem A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g 𝑸 h x A 𝑷 B
6 1 2 3 4 5 genpcl A 𝑷 B 𝑷 A 𝑷 B 𝑷