Metamath Proof Explorer


Theorem mulclprlem

Description: Lemma to prove downward closure in positive real multiplication. Part of proof of Proposition 9-3.7 of Gleason p. 124. (Contributed by NM, 14-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulclprlem A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g 𝑸 h x A 𝑷 B

Proof

Step Hyp Ref Expression
1 elprnq A 𝑷 g A g 𝑸
2 elprnq B 𝑷 h B h 𝑸
3 recclnq h 𝑸 * 𝑸 h 𝑸
4 3 adantl g 𝑸 h 𝑸 * 𝑸 h 𝑸
5 vex x V
6 ovex g 𝑸 h V
7 ltmnq w 𝑸 y < 𝑸 z w 𝑸 y < 𝑸 w 𝑸 z
8 fvex * 𝑸 h V
9 mulcomnq y 𝑸 z = z 𝑸 y
10 5 6 7 8 9 caovord2 * 𝑸 h 𝑸 x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h < 𝑸 g 𝑸 h 𝑸 * 𝑸 h
11 4 10 syl g 𝑸 h 𝑸 x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h < 𝑸 g 𝑸 h 𝑸 * 𝑸 h
12 mulassnq g 𝑸 h 𝑸 * 𝑸 h = g 𝑸 h 𝑸 * 𝑸 h
13 recidnq h 𝑸 h 𝑸 * 𝑸 h = 1 𝑸
14 13 oveq2d h 𝑸 g 𝑸 h 𝑸 * 𝑸 h = g 𝑸 1 𝑸
15 12 14 eqtrid h 𝑸 g 𝑸 h 𝑸 * 𝑸 h = g 𝑸 1 𝑸
16 mulidnq g 𝑸 g 𝑸 1 𝑸 = g
17 15 16 sylan9eqr g 𝑸 h 𝑸 g 𝑸 h 𝑸 * 𝑸 h = g
18 17 breq2d g 𝑸 h 𝑸 x 𝑸 * 𝑸 h < 𝑸 g 𝑸 h 𝑸 * 𝑸 h x 𝑸 * 𝑸 h < 𝑸 g
19 11 18 bitrd g 𝑸 h 𝑸 x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h < 𝑸 g
20 1 2 19 syl2an A 𝑷 g A B 𝑷 h B x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h < 𝑸 g
21 prcdnq A 𝑷 g A x 𝑸 * 𝑸 h < 𝑸 g x 𝑸 * 𝑸 h A
22 21 adantr A 𝑷 g A B 𝑷 h B x 𝑸 * 𝑸 h < 𝑸 g x 𝑸 * 𝑸 h A
23 20 22 sylbid A 𝑷 g A B 𝑷 h B x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h A
24 df-mp 𝑷 = w 𝑷 , v 𝑷 x | y w z v x = y 𝑸 z
25 mulclnq y 𝑸 z 𝑸 y 𝑸 z 𝑸
26 24 25 genpprecl A 𝑷 B 𝑷 x 𝑸 * 𝑸 h A h B x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
27 26 exp4b A 𝑷 B 𝑷 x 𝑸 * 𝑸 h A h B x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
28 27 com34 A 𝑷 B 𝑷 h B x 𝑸 * 𝑸 h A x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
29 28 imp32 A 𝑷 B 𝑷 h B x 𝑸 * 𝑸 h A x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
30 29 adantlr A 𝑷 g A B 𝑷 h B x 𝑸 * 𝑸 h A x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
31 23 30 syld A 𝑷 g A B 𝑷 h B x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
32 31 adantr A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g 𝑸 h x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B
33 2 adantl A 𝑷 g A B 𝑷 h B h 𝑸
34 mulassnq x 𝑸 * 𝑸 h 𝑸 h = x 𝑸 * 𝑸 h 𝑸 h
35 mulcomnq * 𝑸 h 𝑸 h = h 𝑸 * 𝑸 h
36 35 13 eqtrid h 𝑸 * 𝑸 h 𝑸 h = 1 𝑸
37 36 oveq2d h 𝑸 x 𝑸 * 𝑸 h 𝑸 h = x 𝑸 1 𝑸
38 34 37 eqtrid h 𝑸 x 𝑸 * 𝑸 h 𝑸 h = x 𝑸 1 𝑸
39 mulidnq x 𝑸 x 𝑸 1 𝑸 = x
40 38 39 sylan9eq h 𝑸 x 𝑸 x 𝑸 * 𝑸 h 𝑸 h = x
41 40 eleq1d h 𝑸 x 𝑸 x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B x A 𝑷 B
42 33 41 sylan A 𝑷 g A B 𝑷 h B x 𝑸 x 𝑸 * 𝑸 h 𝑸 h A 𝑷 B x A 𝑷 B
43 32 42 sylibd A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g 𝑸 h x A 𝑷 B