Metamath Proof Explorer


Theorem mulcmpblnr

Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcmpblnr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 F + 𝑷 B 𝑷 G A 𝑷 G + 𝑷 B 𝑷 F ~ 𝑹 C 𝑷 R + 𝑷 D 𝑷 S C 𝑷 S + 𝑷 D 𝑷 R

Proof

Step Hyp Ref Expression
1 mulcmpblnrlem A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
2 mulclpr D 𝑷 F 𝑷 D 𝑷 F 𝑷
3 2 ad2ant2lr C 𝑷 D 𝑷 F 𝑷 G 𝑷 D 𝑷 F 𝑷
4 3 ad2ant2lr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 D 𝑷 F 𝑷
5 simplll A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷
6 simprll A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 F 𝑷
7 mulclpr A 𝑷 F 𝑷 A 𝑷 F 𝑷
8 5 6 7 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷 F 𝑷
9 simpllr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 B 𝑷
10 simprlr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 G 𝑷
11 mulclpr B 𝑷 G 𝑷 B 𝑷 G 𝑷
12 9 10 11 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 B 𝑷 G 𝑷
13 addclpr A 𝑷 F 𝑷 B 𝑷 G 𝑷 A 𝑷 F + 𝑷 B 𝑷 G 𝑷
14 8 12 13 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷 F + 𝑷 B 𝑷 G 𝑷
15 simplrl A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 C 𝑷
16 simprrr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 S 𝑷
17 mulclpr C 𝑷 S 𝑷 C 𝑷 S 𝑷
18 15 16 17 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 C 𝑷 S 𝑷
19 simplrr A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 D 𝑷
20 simprrl A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 R 𝑷
21 mulclpr D 𝑷 R 𝑷 D 𝑷 R 𝑷
22 19 20 21 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 D 𝑷 R 𝑷
23 addclpr C 𝑷 S 𝑷 D 𝑷 R 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷
24 18 22 23 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷
25 addclpr A 𝑷 F + 𝑷 B 𝑷 G 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷
26 14 24 25 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷
27 addcanpr D 𝑷 F 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷 D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
28 4 26 27 syl2anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
29 1 28 syl5 A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
30 mulclpr A 𝑷 G 𝑷 A 𝑷 G 𝑷
31 mulclpr B 𝑷 F 𝑷 B 𝑷 F 𝑷
32 addclpr A 𝑷 G 𝑷 B 𝑷 F 𝑷 A 𝑷 G + 𝑷 B 𝑷 F 𝑷
33 30 31 32 syl2an A 𝑷 G 𝑷 B 𝑷 F 𝑷 A 𝑷 G + 𝑷 B 𝑷 F 𝑷
34 5 10 9 6 33 syl22anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷 G + 𝑷 B 𝑷 F 𝑷
35 mulclpr C 𝑷 R 𝑷 C 𝑷 R 𝑷
36 mulclpr D 𝑷 S 𝑷 D 𝑷 S 𝑷
37 addclpr C 𝑷 R 𝑷 D 𝑷 S 𝑷 C 𝑷 R + 𝑷 D 𝑷 S 𝑷
38 35 36 37 syl2an C 𝑷 R 𝑷 D 𝑷 S 𝑷 C 𝑷 R + 𝑷 D 𝑷 S 𝑷
39 15 20 19 16 38 syl22anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 C 𝑷 R + 𝑷 D 𝑷 S 𝑷
40 enrbreq A 𝑷 F + 𝑷 B 𝑷 G 𝑷 A 𝑷 G + 𝑷 B 𝑷 F 𝑷 C 𝑷 R + 𝑷 D 𝑷 S 𝑷 C 𝑷 S + 𝑷 D 𝑷 R 𝑷 A 𝑷 F + 𝑷 B 𝑷 G A 𝑷 G + 𝑷 B 𝑷 F ~ 𝑹 C 𝑷 R + 𝑷 D 𝑷 S C 𝑷 S + 𝑷 D 𝑷 R A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
41 14 34 39 24 40 syl22anc A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A 𝑷 F + 𝑷 B 𝑷 G A 𝑷 G + 𝑷 B 𝑷 F ~ 𝑹 C 𝑷 R + 𝑷 D 𝑷 S C 𝑷 S + 𝑷 D 𝑷 R A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
42 29 41 sylibrd A 𝑷 B 𝑷 C 𝑷 D 𝑷 F 𝑷 G 𝑷 R 𝑷 S 𝑷 A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 F + 𝑷 B 𝑷 G A 𝑷 G + 𝑷 B 𝑷 F ~ 𝑹 C 𝑷 R + 𝑷 D 𝑷 S C 𝑷 S + 𝑷 D 𝑷 R