Metamath Proof Explorer


Theorem mulcmpblnrlem

Description: Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcmpblnrlem A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S

Proof

Step Hyp Ref Expression
1 oveq1 A + 𝑷 D = B + 𝑷 C A + 𝑷 D 𝑷 F = B + 𝑷 C 𝑷 F
2 distrpr F 𝑷 A + 𝑷 D = F 𝑷 A + 𝑷 F 𝑷 D
3 mulcompr A + 𝑷 D 𝑷 F = F 𝑷 A + 𝑷 D
4 mulcompr A 𝑷 F = F 𝑷 A
5 mulcompr D 𝑷 F = F 𝑷 D
6 4 5 oveq12i A 𝑷 F + 𝑷 D 𝑷 F = F 𝑷 A + 𝑷 F 𝑷 D
7 2 3 6 3eqtr4i A + 𝑷 D 𝑷 F = A 𝑷 F + 𝑷 D 𝑷 F
8 distrpr F 𝑷 B + 𝑷 C = F 𝑷 B + 𝑷 F 𝑷 C
9 mulcompr B + 𝑷 C 𝑷 F = F 𝑷 B + 𝑷 C
10 mulcompr B 𝑷 F = F 𝑷 B
11 mulcompr C 𝑷 F = F 𝑷 C
12 10 11 oveq12i B 𝑷 F + 𝑷 C 𝑷 F = F 𝑷 B + 𝑷 F 𝑷 C
13 8 9 12 3eqtr4i B + 𝑷 C 𝑷 F = B 𝑷 F + 𝑷 C 𝑷 F
14 1 7 13 3eqtr3g A + 𝑷 D = B + 𝑷 C A 𝑷 F + 𝑷 D 𝑷 F = B 𝑷 F + 𝑷 C 𝑷 F
15 14 oveq1d A + 𝑷 D = B + 𝑷 C A 𝑷 F + 𝑷 D 𝑷 F + 𝑷 C 𝑷 S = B 𝑷 F + 𝑷 C 𝑷 F + 𝑷 C 𝑷 S
16 addasspr B 𝑷 F + 𝑷 C 𝑷 F + 𝑷 C 𝑷 S = B 𝑷 F + 𝑷 C 𝑷 F + 𝑷 C 𝑷 S
17 oveq2 F + 𝑷 S = G + 𝑷 R C 𝑷 F + 𝑷 S = C 𝑷 G + 𝑷 R
18 distrpr C 𝑷 F + 𝑷 S = C 𝑷 F + 𝑷 C 𝑷 S
19 distrpr C 𝑷 G + 𝑷 R = C 𝑷 G + 𝑷 C 𝑷 R
20 17 18 19 3eqtr3g F + 𝑷 S = G + 𝑷 R C 𝑷 F + 𝑷 C 𝑷 S = C 𝑷 G + 𝑷 C 𝑷 R
21 20 oveq2d F + 𝑷 S = G + 𝑷 R B 𝑷 F + 𝑷 C 𝑷 F + 𝑷 C 𝑷 S = B 𝑷 F + 𝑷 C 𝑷 G + 𝑷 C 𝑷 R
22 16 21 eqtrid F + 𝑷 S = G + 𝑷 R B 𝑷 F + 𝑷 C 𝑷 F + 𝑷 C 𝑷 S = B 𝑷 F + 𝑷 C 𝑷 G + 𝑷 C 𝑷 R
23 15 22 sylan9eq A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 F + 𝑷 D 𝑷 F + 𝑷 C 𝑷 S = B 𝑷 F + 𝑷 C 𝑷 G + 𝑷 C 𝑷 R
24 ovex A 𝑷 F V
25 ovex D 𝑷 F V
26 ovex C 𝑷 S V
27 addcompr x + 𝑷 y = y + 𝑷 x
28 addasspr x + 𝑷 y + 𝑷 z = x + 𝑷 y + 𝑷 z
29 24 25 26 27 28 caov32 A 𝑷 F + 𝑷 D 𝑷 F + 𝑷 C 𝑷 S = A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 D 𝑷 F
30 ovex B 𝑷 F V
31 ovex C 𝑷 G V
32 ovex C 𝑷 R V
33 30 31 32 27 28 caov12 B 𝑷 F + 𝑷 C 𝑷 G + 𝑷 C 𝑷 R = C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
34 23 29 33 3eqtr3g A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 D 𝑷 F = C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
35 34 oveq2d A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 D 𝑷 F = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
36 oveq2 F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 S = D 𝑷 G + 𝑷 R
37 distrpr D 𝑷 F + 𝑷 S = D 𝑷 F + 𝑷 D 𝑷 S
38 distrpr D 𝑷 G + 𝑷 R = D 𝑷 G + 𝑷 D 𝑷 R
39 36 37 38 3eqtr3g F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 D 𝑷 S = D 𝑷 G + 𝑷 D 𝑷 R
40 39 oveq2d F + 𝑷 S = G + 𝑷 R A 𝑷 G + 𝑷 D 𝑷 F + 𝑷 D 𝑷 S = A 𝑷 G + 𝑷 D 𝑷 G + 𝑷 D 𝑷 R
41 addasspr A 𝑷 G + 𝑷 D 𝑷 G + 𝑷 D 𝑷 R = A 𝑷 G + 𝑷 D 𝑷 G + 𝑷 D 𝑷 R
42 40 41 eqtr4di F + 𝑷 S = G + 𝑷 R A 𝑷 G + 𝑷 D 𝑷 F + 𝑷 D 𝑷 S = A 𝑷 G + 𝑷 D 𝑷 G + 𝑷 D 𝑷 R
43 oveq1 A + 𝑷 D = B + 𝑷 C A + 𝑷 D 𝑷 G = B + 𝑷 C 𝑷 G
44 distrpr G 𝑷 A + 𝑷 D = G 𝑷 A + 𝑷 G 𝑷 D
45 mulcompr A + 𝑷 D 𝑷 G = G 𝑷 A + 𝑷 D
46 mulcompr A 𝑷 G = G 𝑷 A
47 mulcompr D 𝑷 G = G 𝑷 D
48 46 47 oveq12i A 𝑷 G + 𝑷 D 𝑷 G = G 𝑷 A + 𝑷 G 𝑷 D
49 44 45 48 3eqtr4i A + 𝑷 D 𝑷 G = A 𝑷 G + 𝑷 D 𝑷 G
50 distrpr G 𝑷 B + 𝑷 C = G 𝑷 B + 𝑷 G 𝑷 C
51 mulcompr B + 𝑷 C 𝑷 G = G 𝑷 B + 𝑷 C
52 mulcompr B 𝑷 G = G 𝑷 B
53 mulcompr C 𝑷 G = G 𝑷 C
54 52 53 oveq12i B 𝑷 G + 𝑷 C 𝑷 G = G 𝑷 B + 𝑷 G 𝑷 C
55 50 51 54 3eqtr4i B + 𝑷 C 𝑷 G = B 𝑷 G + 𝑷 C 𝑷 G
56 43 49 55 3eqtr3g A + 𝑷 D = B + 𝑷 C A 𝑷 G + 𝑷 D 𝑷 G = B 𝑷 G + 𝑷 C 𝑷 G
57 56 oveq1d A + 𝑷 D = B + 𝑷 C A 𝑷 G + 𝑷 D 𝑷 G + 𝑷 D 𝑷 R = B 𝑷 G + 𝑷 C 𝑷 G + 𝑷 D 𝑷 R
58 42 57 sylan9eqr A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R A 𝑷 G + 𝑷 D 𝑷 F + 𝑷 D 𝑷 S = B 𝑷 G + 𝑷 C 𝑷 G + 𝑷 D 𝑷 R
59 ovex A 𝑷 G V
60 ovex D 𝑷 S V
61 59 25 60 27 28 caov12 A 𝑷 G + 𝑷 D 𝑷 F + 𝑷 D 𝑷 S = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S
62 ovex B 𝑷 G V
63 ovex D 𝑷 R V
64 62 31 63 27 28 caov32 B 𝑷 G + 𝑷 C 𝑷 G + 𝑷 D 𝑷 R = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G
65 58 61 64 3eqtr3g A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G
66 65 oveq1d A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
67 addasspr B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
68 66 67 eqtrdi A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 C 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
69 35 68 eqtr4d A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 D 𝑷 F = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
70 ovex B 𝑷 G + 𝑷 D 𝑷 R V
71 ovex A 𝑷 F + 𝑷 C 𝑷 S V
72 70 71 25 27 28 caov13 B 𝑷 G + 𝑷 D 𝑷 R + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 D 𝑷 F = D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 B 𝑷 G + 𝑷 D 𝑷 R
73 addasspr D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
74 69 72 73 3eqtr3g A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 B 𝑷 G + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R
75 24 26 62 27 28 63 caov4 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 B 𝑷 G + 𝑷 D 𝑷 R = A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R
76 75 oveq2i D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 C 𝑷 S + 𝑷 B 𝑷 G + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R
77 59 60 30 27 28 32 caov42 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
78 77 oveq2i D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 D 𝑷 S + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S
79 74 76 78 3eqtr3g A + 𝑷 D = B + 𝑷 C F + 𝑷 S = G + 𝑷 R D 𝑷 F + 𝑷 A 𝑷 F + 𝑷 B 𝑷 G + 𝑷 C 𝑷 S + 𝑷 D 𝑷 R = D 𝑷 F + 𝑷 A 𝑷 G + 𝑷 B 𝑷 F + 𝑷 C 𝑷 R + 𝑷 D 𝑷 S