Metamath Proof Explorer


Theorem mulcn2

Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of Gleason p. 243. (Contributed by Mario Carneiro, 31-Jan-2014)

Ref Expression
Assertion mulcn2 A + B C y + z + u v u B < y v C < z u v B C < A

Proof

Step Hyp Ref Expression
1 rphalfcl A + A 2 +
2 1 3ad2ant1 A + B C A 2 +
3 abscl C C
4 3 3ad2ant3 A + B C C
5 abscl B B
6 5 3ad2ant2 A + B C B
7 1re 1
8 readdcl B 1 B + 1
9 6 7 8 sylancl A + B C B + 1
10 absge0 B 0 B
11 0lt1 0 < 1
12 addgegt0 B 1 0 B 0 < 1 0 < B + 1
13 12 an4s B 0 B 1 0 < 1 0 < B + 1
14 7 11 13 mpanr12 B 0 B 0 < B + 1
15 5 10 14 syl2anc B 0 < B + 1
16 15 3ad2ant2 A + B C 0 < B + 1
17 9 16 elrpd A + B C B + 1 +
18 2 17 rpdivcld A + B C A 2 B + 1 +
19 18 rpred A + B C A 2 B + 1
20 4 19 readdcld A + B C C + A 2 B + 1
21 absge0 C 0 C
22 21 3ad2ant3 A + B C 0 C
23 elrp A 2 B + 1 + A 2 B + 1 0 < A 2 B + 1
24 addgegt0 C A 2 B + 1 0 C 0 < A 2 B + 1 0 < C + A 2 B + 1
25 24 an4s C 0 C A 2 B + 1 0 < A 2 B + 1 0 < C + A 2 B + 1
26 23 25 sylan2b C 0 C A 2 B + 1 + 0 < C + A 2 B + 1
27 4 22 18 26 syl21anc A + B C 0 < C + A 2 B + 1
28 20 27 elrpd A + B C C + A 2 B + 1 +
29 2 28 rpdivcld A + B C A 2 C + A 2 B + 1 +
30 simprl A + B C u v u
31 simpl2 A + B C u v B
32 30 31 subcld A + B C u v u B
33 32 abscld A + B C u v u B
34 2 adantr A + B C u v A 2 +
35 34 rpred A + B C u v A 2
36 28 adantr A + B C u v C + A 2 B + 1 +
37 33 35 36 ltmuldivd A + B C u v u B C + A 2 B + 1 < A 2 u B < A 2 C + A 2 B + 1
38 simprr A + B C u v v
39 simpl3 A + B C u v C
40 38 39 abs2difd A + B C u v v C v C
41 38 abscld A + B C u v v
42 4 adantr A + B C u v C
43 41 42 resubcld A + B C u v v C
44 38 39 subcld A + B C u v v C
45 44 abscld A + B C u v v C
46 19 adantr A + B C u v A 2 B + 1
47 lelttr v C v C A 2 B + 1 v C v C v C < A 2 B + 1 v C < A 2 B + 1
48 43 45 46 47 syl3anc A + B C u v v C v C v C < A 2 B + 1 v C < A 2 B + 1
49 40 48 mpand A + B C u v v C < A 2 B + 1 v C < A 2 B + 1
50 41 42 46 ltsubadd2d A + B C u v v C < A 2 B + 1 v < C + A 2 B + 1
51 49 50 sylibd A + B C u v v C < A 2 B + 1 v < C + A 2 B + 1
52 20 adantr A + B C u v C + A 2 B + 1
53 ltle v C + A 2 B + 1 v < C + A 2 B + 1 v C + A 2 B + 1
54 41 52 53 syl2anc A + B C u v v < C + A 2 B + 1 v C + A 2 B + 1
55 51 54 syld A + B C u v v C < A 2 B + 1 v C + A 2 B + 1
56 32 absge0d A + B C u v 0 u B
57 lemul2a v C + A 2 B + 1 u B 0 u B v C + A 2 B + 1 u B v u B C + A 2 B + 1
58 57 ex v C + A 2 B + 1 u B 0 u B v C + A 2 B + 1 u B v u B C + A 2 B + 1
59 41 52 33 56 58 syl112anc A + B C u v v C + A 2 B + 1 u B v u B C + A 2 B + 1
60 33 41 remulcld A + B C u v u B v
61 33 52 remulcld A + B C u v u B C + A 2 B + 1
62 lelttr u B v u B C + A 2 B + 1 A 2 u B v u B C + A 2 B + 1 u B C + A 2 B + 1 < A 2 u B v < A 2
63 60 61 35 62 syl3anc A + B C u v u B v u B C + A 2 B + 1 u B C + A 2 B + 1 < A 2 u B v < A 2
64 63 expd A + B C u v u B v u B C + A 2 B + 1 u B C + A 2 B + 1 < A 2 u B v < A 2
65 55 59 64 3syld A + B C u v v C < A 2 B + 1 u B C + A 2 B + 1 < A 2 u B v < A 2
66 65 com23 A + B C u v u B C + A 2 B + 1 < A 2 v C < A 2 B + 1 u B v < A 2
67 37 66 sylbird A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u B v < A 2
68 67 impd A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u B v < A 2
69 32 38 absmuld A + B C u v u B v = u B v
70 30 31 38 subdird A + B C u v u B v = u v B v
71 70 fveq2d A + B C u v u B v = u v B v
72 69 71 eqtr3d A + B C u v u B v = u v B v
73 72 breq1d A + B C u v u B v < A 2 u v B v < A 2
74 68 73 sylibd A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B v < A 2
75 17 adantr A + B C u v B + 1 +
76 45 35 75 ltmuldiv2d A + B C u v B + 1 v C < A 2 v C < A 2 B + 1
77 31 38 39 subdid A + B C u v B v C = B v B C
78 77 fveq2d A + B C u v B v C = B v B C
79 31 44 absmuld A + B C u v B v C = B v C
80 78 79 eqtr3d A + B C u v B v B C = B v C
81 31 abscld A + B C u v B
82 81 lep1d A + B C u v B B + 1
83 9 adantr A + B C u v B + 1
84 abscl v C v C
85 absge0 v C 0 v C
86 84 85 jca v C v C 0 v C
87 lemul1a B B + 1 v C 0 v C B B + 1 B v C B + 1 v C
88 87 ex B B + 1 v C 0 v C B B + 1 B v C B + 1 v C
89 86 88 syl3an3 B B + 1 v C B B + 1 B v C B + 1 v C
90 81 83 44 89 syl3anc A + B C u v B B + 1 B v C B + 1 v C
91 82 90 mpd A + B C u v B v C B + 1 v C
92 80 91 eqbrtrd A + B C u v B v B C B + 1 v C
93 31 38 mulcld A + B C u v B v
94 31 39 mulcld A + B C u v B C
95 93 94 subcld A + B C u v B v B C
96 95 abscld A + B C u v B v B C
97 83 45 remulcld A + B C u v B + 1 v C
98 lelttr B v B C B + 1 v C A 2 B v B C B + 1 v C B + 1 v C < A 2 B v B C < A 2
99 96 97 35 98 syl3anc A + B C u v B v B C B + 1 v C B + 1 v C < A 2 B v B C < A 2
100 92 99 mpand A + B C u v B + 1 v C < A 2 B v B C < A 2
101 76 100 sylbird A + B C u v v C < A 2 B + 1 B v B C < A 2
102 101 adantld A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 B v B C < A 2
103 74 102 jcad A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B v < A 2 B v B C < A 2
104 mulcl u v u v
105 104 adantl A + B C u v u v
106 simpl1 A + B C u v A +
107 106 rpred A + B C u v A
108 abs3lem u v B C B v A u v B v < A 2 B v B C < A 2 u v B C < A
109 105 94 93 107 108 syl22anc A + B C u v u v B v < A 2 B v B C < A 2 u v B C < A
110 103 109 syld A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B C < A
111 110 ralrimivva A + B C u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B C < A
112 breq2 y = A 2 C + A 2 B + 1 u B < y u B < A 2 C + A 2 B + 1
113 112 anbi1d y = A 2 C + A 2 B + 1 u B < y v C < z u B < A 2 C + A 2 B + 1 v C < z
114 113 imbi1d y = A 2 C + A 2 B + 1 u B < y v C < z u v B C < A u B < A 2 C + A 2 B + 1 v C < z u v B C < A
115 114 2ralbidv y = A 2 C + A 2 B + 1 u v u B < y v C < z u v B C < A u v u B < A 2 C + A 2 B + 1 v C < z u v B C < A
116 breq2 z = A 2 B + 1 v C < z v C < A 2 B + 1
117 116 anbi2d z = A 2 B + 1 u B < A 2 C + A 2 B + 1 v C < z u B < A 2 C + A 2 B + 1 v C < A 2 B + 1
118 117 imbi1d z = A 2 B + 1 u B < A 2 C + A 2 B + 1 v C < z u v B C < A u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B C < A
119 118 2ralbidv z = A 2 B + 1 u v u B < A 2 C + A 2 B + 1 v C < z u v B C < A u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B C < A
120 115 119 rspc2ev A 2 C + A 2 B + 1 + A 2 B + 1 + u v u B < A 2 C + A 2 B + 1 v C < A 2 B + 1 u v B C < A y + z + u v u B < y v C < z u v B C < A
121 29 18 111 120 syl3anc A + B C y + z + u v u B < y v C < z u v B C < A