Step |
Hyp |
Ref |
Expression |
1 |
|
rphalfcl |
|
2 |
1
|
3ad2ant1 |
|
3 |
|
abscl |
|
4 |
3
|
3ad2ant3 |
|
5 |
|
abscl |
|
6 |
5
|
3ad2ant2 |
|
7 |
|
1re |
|
8 |
|
readdcl |
|
9 |
6 7 8
|
sylancl |
|
10 |
|
absge0 |
|
11 |
|
0lt1 |
|
12 |
|
addgegt0 |
|
13 |
12
|
an4s |
|
14 |
7 11 13
|
mpanr12 |
|
15 |
5 10 14
|
syl2anc |
|
16 |
15
|
3ad2ant2 |
|
17 |
9 16
|
elrpd |
|
18 |
2 17
|
rpdivcld |
|
19 |
18
|
rpred |
|
20 |
4 19
|
readdcld |
|
21 |
|
absge0 |
|
22 |
21
|
3ad2ant3 |
|
23 |
|
elrp |
|
24 |
|
addgegt0 |
|
25 |
24
|
an4s |
|
26 |
23 25
|
sylan2b |
|
27 |
4 22 18 26
|
syl21anc |
|
28 |
20 27
|
elrpd |
|
29 |
2 28
|
rpdivcld |
|
30 |
|
simprl |
|
31 |
|
simpl2 |
|
32 |
30 31
|
subcld |
|
33 |
32
|
abscld |
|
34 |
2
|
adantr |
|
35 |
34
|
rpred |
|
36 |
28
|
adantr |
|
37 |
33 35 36
|
ltmuldivd |
|
38 |
|
simprr |
|
39 |
|
simpl3 |
|
40 |
38 39
|
abs2difd |
|
41 |
38
|
abscld |
|
42 |
4
|
adantr |
|
43 |
41 42
|
resubcld |
|
44 |
38 39
|
subcld |
|
45 |
44
|
abscld |
|
46 |
19
|
adantr |
|
47 |
|
lelttr |
|
48 |
43 45 46 47
|
syl3anc |
|
49 |
40 48
|
mpand |
|
50 |
41 42 46
|
ltsubadd2d |
|
51 |
49 50
|
sylibd |
|
52 |
20
|
adantr |
|
53 |
|
ltle |
|
54 |
41 52 53
|
syl2anc |
|
55 |
51 54
|
syld |
|
56 |
32
|
absge0d |
|
57 |
|
lemul2a |
|
58 |
57
|
ex |
|
59 |
41 52 33 56 58
|
syl112anc |
|
60 |
33 41
|
remulcld |
|
61 |
33 52
|
remulcld |
|
62 |
|
lelttr |
|
63 |
60 61 35 62
|
syl3anc |
|
64 |
63
|
expd |
|
65 |
55 59 64
|
3syld |
|
66 |
65
|
com23 |
|
67 |
37 66
|
sylbird |
|
68 |
67
|
impd |
|
69 |
32 38
|
absmuld |
|
70 |
30 31 38
|
subdird |
|
71 |
70
|
fveq2d |
|
72 |
69 71
|
eqtr3d |
|
73 |
72
|
breq1d |
|
74 |
68 73
|
sylibd |
|
75 |
17
|
adantr |
|
76 |
45 35 75
|
ltmuldiv2d |
|
77 |
31 38 39
|
subdid |
|
78 |
77
|
fveq2d |
|
79 |
31 44
|
absmuld |
|
80 |
78 79
|
eqtr3d |
|
81 |
31
|
abscld |
|
82 |
81
|
lep1d |
|
83 |
9
|
adantr |
|
84 |
|
abscl |
|
85 |
|
absge0 |
|
86 |
84 85
|
jca |
|
87 |
|
lemul1a |
|
88 |
87
|
ex |
|
89 |
86 88
|
syl3an3 |
|
90 |
81 83 44 89
|
syl3anc |
|
91 |
82 90
|
mpd |
|
92 |
80 91
|
eqbrtrd |
|
93 |
31 38
|
mulcld |
|
94 |
31 39
|
mulcld |
|
95 |
93 94
|
subcld |
|
96 |
95
|
abscld |
|
97 |
83 45
|
remulcld |
|
98 |
|
lelttr |
|
99 |
96 97 35 98
|
syl3anc |
|
100 |
92 99
|
mpand |
|
101 |
76 100
|
sylbird |
|
102 |
101
|
adantld |
|
103 |
74 102
|
jcad |
|
104 |
|
mulcl |
|
105 |
104
|
adantl |
|
106 |
|
simpl1 |
|
107 |
106
|
rpred |
|
108 |
|
abs3lem |
|
109 |
105 94 93 107 108
|
syl22anc |
|
110 |
103 109
|
syld |
|
111 |
110
|
ralrimivva |
|
112 |
|
breq2 |
|
113 |
112
|
anbi1d |
|
114 |
113
|
imbi1d |
|
115 |
114
|
2ralbidv |
|
116 |
|
breq2 |
|
117 |
116
|
anbi2d |
|
118 |
117
|
imbi1d |
|
119 |
118
|
2ralbidv |
|
120 |
115 119
|
rspc2ev |
|
121 |
29 18 111 120
|
syl3anc |
|