Metamath Proof Explorer


Theorem mulcncf

Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses mulcncf.1 φ x X A : X cn
mulcncf.2 φ x X B : X cn
Assertion mulcncf φ x X A B : X cn

Proof

Step Hyp Ref Expression
1 mulcncf.1 φ x X A : X cn
2 mulcncf.2 φ x X B : X cn
3 eqid TopOpen fld = TopOpen fld
4 3 cnfldtopon TopOpen fld TopOn
5 cncfrss x X A : X cn X
6 1 5 syl φ X
7 resttopon TopOpen fld TopOn X TopOpen fld 𝑡 X TopOn X
8 4 6 7 sylancr φ TopOpen fld 𝑡 X TopOn X
9 ssid
10 eqid TopOpen fld 𝑡 X = TopOpen fld 𝑡 X
11 4 toponrestid TopOpen fld = TopOpen fld 𝑡
12 3 10 11 cncfcn X X cn = TopOpen fld 𝑡 X Cn TopOpen fld
13 6 9 12 sylancl φ X cn = TopOpen fld 𝑡 X Cn TopOpen fld
14 1 13 eleqtrd φ x X A TopOpen fld 𝑡 X Cn TopOpen fld
15 2 13 eleqtrd φ x X B TopOpen fld 𝑡 X Cn TopOpen fld
16 4 a1i φ TopOpen fld TopOn
17 3 mpomulcn u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
18 17 a1i φ u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
19 oveq12 u = A v = B u v = A B
20 8 14 15 16 16 18 19 cnmpt12 φ x X A B TopOpen fld 𝑡 X Cn TopOpen fld
21 20 13 eleqtrrd φ x X A B : X cn