Metamath Proof Explorer


Theorem mulcncf

Description: The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses mulcncf.1 φ x X A : X cn
mulcncf.2 φ x X B : X cn
Assertion mulcncf φ x X A B : X cn

Proof

Step Hyp Ref Expression
1 mulcncf.1 φ x X A : X cn
2 mulcncf.2 φ x X B : X cn
3 eqid TopOpen fld = TopOpen fld
4 3 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
5 4 a1i φ × TopOpen fld × t TopOpen fld Cn TopOpen fld
6 3 5 1 2 cncfmpt2f φ x X A B : X cn