Metamath Proof Explorer


Theorem mulcncfOLD

Description: Obsolete version of mulcncf as of 9-Apr-2025. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mulcncfOLD.1 φ x X A : X cn
mulcncfOLD.2 φ x X B : X cn
Assertion mulcncfOLD φ x X A B : X cn

Proof

Step Hyp Ref Expression
1 mulcncfOLD.1 φ x X A : X cn
2 mulcncfOLD.2 φ x X B : X cn
3 eqid TopOpen fld = TopOpen fld
4 3 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
5 4 a1i φ × TopOpen fld × t TopOpen fld Cn TopOpen fld
6 3 5 1 2 cncfmpt2f φ x X A B : X cn