Metamath Proof Explorer


Theorem mulcnsr

Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion mulcnsr A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B C D = A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D B 𝑹 C + 𝑹 A 𝑹 D

Proof

Step Hyp Ref Expression
1 opex A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D B 𝑹 C + 𝑹 A 𝑹 D V
2 oveq1 w = A w 𝑹 u = A 𝑹 u
3 oveq1 v = B v 𝑹 f = B 𝑹 f
4 3 oveq2d v = B -1 𝑹 𝑹 v 𝑹 f = -1 𝑹 𝑹 B 𝑹 f
5 2 4 oveqan12d w = A v = B w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f = A 𝑹 u + 𝑹 -1 𝑹 𝑹 B 𝑹 f
6 oveq1 v = B v 𝑹 u = B 𝑹 u
7 oveq1 w = A w 𝑹 f = A 𝑹 f
8 6 7 oveqan12rd w = A v = B v 𝑹 u + 𝑹 w 𝑹 f = B 𝑹 u + 𝑹 A 𝑹 f
9 5 8 opeq12d w = A v = B w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f = A 𝑹 u + 𝑹 -1 𝑹 𝑹 B 𝑹 f B 𝑹 u + 𝑹 A 𝑹 f
10 oveq2 u = C A 𝑹 u = A 𝑹 C
11 oveq2 f = D B 𝑹 f = B 𝑹 D
12 11 oveq2d f = D -1 𝑹 𝑹 B 𝑹 f = -1 𝑹 𝑹 B 𝑹 D
13 10 12 oveqan12d u = C f = D A 𝑹 u + 𝑹 -1 𝑹 𝑹 B 𝑹 f = A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D
14 oveq2 u = C B 𝑹 u = B 𝑹 C
15 oveq2 f = D A 𝑹 f = A 𝑹 D
16 14 15 oveqan12d u = C f = D B 𝑹 u + 𝑹 A 𝑹 f = B 𝑹 C + 𝑹 A 𝑹 D
17 13 16 opeq12d u = C f = D A 𝑹 u + 𝑹 -1 𝑹 𝑹 B 𝑹 f B 𝑹 u + 𝑹 A 𝑹 f = A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D B 𝑹 C + 𝑹 A 𝑹 D
18 9 17 sylan9eq w = A v = B u = C f = D w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f = A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D B 𝑹 C + 𝑹 A 𝑹 D
19 df-mul × = x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
20 df-c = 𝑹 × 𝑹
21 20 eleq2i x x 𝑹 × 𝑹
22 20 eleq2i y y 𝑹 × 𝑹
23 21 22 anbi12i x y x 𝑹 × 𝑹 y 𝑹 × 𝑹
24 23 anbi1i x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
25 24 oprabbii x y z | x y w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f = x y z | x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
26 19 25 eqtri × = x y z | x 𝑹 × 𝑹 y 𝑹 × 𝑹 w v u f x = w v y = u f z = w 𝑹 u + 𝑹 -1 𝑹 𝑹 v 𝑹 f v 𝑹 u + 𝑹 w 𝑹 f
27 1 18 26 ov3 A 𝑹 B 𝑹 C 𝑹 D 𝑹 A B C D = A 𝑹 C + 𝑹 -1 𝑹 𝑹 B 𝑹 D B 𝑹 C + 𝑹 A 𝑹 D