Metamath Proof Explorer


Theorem mulcomsr

Description: Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995) (Revised by Mario Carneiro, 28-Apr-2015) (New usage is discouraged.)

Ref Expression
Assertion mulcomsr A 𝑹 B = B 𝑹 A

Proof

Step Hyp Ref Expression
1 df-nr 𝑹 = 𝑷 × 𝑷 / ~ 𝑹
2 mulsrpr x 𝑷 y 𝑷 z 𝑷 w 𝑷 x y ~ 𝑹 𝑹 z w ~ 𝑹 = x 𝑷 z + 𝑷 y 𝑷 w x 𝑷 w + 𝑷 y 𝑷 z ~ 𝑹
3 mulsrpr z 𝑷 w 𝑷 x 𝑷 y 𝑷 z w ~ 𝑹 𝑹 x y ~ 𝑹 = z 𝑷 x + 𝑷 w 𝑷 y z 𝑷 y + 𝑷 w 𝑷 x ~ 𝑹
4 mulcompr x 𝑷 z = z 𝑷 x
5 mulcompr y 𝑷 w = w 𝑷 y
6 4 5 oveq12i x 𝑷 z + 𝑷 y 𝑷 w = z 𝑷 x + 𝑷 w 𝑷 y
7 mulcompr x 𝑷 w = w 𝑷 x
8 mulcompr y 𝑷 z = z 𝑷 y
9 7 8 oveq12i x 𝑷 w + 𝑷 y 𝑷 z = w 𝑷 x + 𝑷 z 𝑷 y
10 addcompr w 𝑷 x + 𝑷 z 𝑷 y = z 𝑷 y + 𝑷 w 𝑷 x
11 9 10 eqtri x 𝑷 w + 𝑷 y 𝑷 z = z 𝑷 y + 𝑷 w 𝑷 x
12 1 2 3 6 11 ecovcom A 𝑹 B 𝑹 A 𝑹 B = B 𝑹 A
13 dmmulsr dom 𝑹 = 𝑹 × 𝑹
14 13 ndmovcom ¬ A 𝑹 B 𝑹 A 𝑹 B = B 𝑹 A
15 12 14 pm2.61i A 𝑹 B = B 𝑹 A