| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
|
| 2 |
1
|
recnd |
|
| 3 |
2
|
mul01d |
|
| 4 |
3
|
oveq1d |
|
| 5 |
|
simp3 |
|
| 6 |
2 5
|
mulcxplem |
|
| 7 |
4 6
|
eqtrd |
|
| 8 |
|
oveq2 |
|
| 9 |
8
|
oveq1d |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
oveq2d |
|
| 12 |
9 11
|
eqeq12d |
|
| 13 |
7 12
|
syl5ibrcom |
|
| 14 |
|
simp2l |
|
| 15 |
14
|
recnd |
|
| 16 |
15
|
mul02d |
|
| 17 |
16
|
oveq1d |
|
| 18 |
15 5
|
mulcxplem |
|
| 19 |
|
cxpcl |
|
| 20 |
15 5 19
|
syl2anc |
|
| 21 |
|
0cn |
|
| 22 |
|
cxpcl |
|
| 23 |
21 5 22
|
sylancr |
|
| 24 |
20 23
|
mulcomd |
|
| 25 |
18 24
|
eqtrd |
|
| 26 |
17 25
|
eqtrd |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
oveq1d |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
oveq1d |
|
| 31 |
28 30
|
eqeq12d |
|
| 32 |
26 31
|
syl5ibrcom |
|
| 33 |
32
|
a1dd |
|
| 34 |
1
|
adantr |
|
| 35 |
|
simpl1r |
|
| 36 |
|
simprl |
|
| 37 |
34 35 36
|
ne0gt0d |
|
| 38 |
34 37
|
elrpd |
|
| 39 |
14
|
adantr |
|
| 40 |
|
simpl2r |
|
| 41 |
|
simprr |
|
| 42 |
39 40 41
|
ne0gt0d |
|
| 43 |
39 42
|
elrpd |
|
| 44 |
38 43
|
relogmuld |
|
| 45 |
44
|
oveq2d |
|
| 46 |
5
|
adantr |
|
| 47 |
2
|
adantr |
|
| 48 |
47 36
|
logcld |
|
| 49 |
15
|
adantr |
|
| 50 |
49 41
|
logcld |
|
| 51 |
46 48 50
|
adddid |
|
| 52 |
45 51
|
eqtrd |
|
| 53 |
52
|
fveq2d |
|
| 54 |
46 48
|
mulcld |
|
| 55 |
46 50
|
mulcld |
|
| 56 |
|
efadd |
|
| 57 |
54 55 56
|
syl2anc |
|
| 58 |
53 57
|
eqtrd |
|
| 59 |
47 49
|
mulcld |
|
| 60 |
47 49 36 41
|
mulne0d |
|
| 61 |
|
cxpef |
|
| 62 |
59 60 46 61
|
syl3anc |
|
| 63 |
|
cxpef |
|
| 64 |
47 36 46 63
|
syl3anc |
|
| 65 |
|
cxpef |
|
| 66 |
49 41 46 65
|
syl3anc |
|
| 67 |
64 66
|
oveq12d |
|
| 68 |
58 62 67
|
3eqtr4d |
|
| 69 |
68
|
exp32 |
|
| 70 |
33 69
|
pm2.61dne |
|
| 71 |
13 70
|
pm2.61dne |
|