Metamath Proof Explorer


Theorem mulcxp

Description: Complex exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion mulcxp A 0 A B 0 B C A B C = A C B C

Proof

Step Hyp Ref Expression
1 simp1l A 0 A B 0 B C A
2 1 recnd A 0 A B 0 B C A
3 2 mul01d A 0 A B 0 B C A 0 = 0
4 3 oveq1d A 0 A B 0 B C A 0 C = 0 C
5 simp3 A 0 A B 0 B C C
6 2 5 mulcxplem A 0 A B 0 B C 0 C = A C 0 C
7 4 6 eqtrd A 0 A B 0 B C A 0 C = A C 0 C
8 oveq2 B = 0 A B = A 0
9 8 oveq1d B = 0 A B C = A 0 C
10 oveq1 B = 0 B C = 0 C
11 10 oveq2d B = 0 A C B C = A C 0 C
12 9 11 eqeq12d B = 0 A B C = A C B C A 0 C = A C 0 C
13 7 12 syl5ibrcom A 0 A B 0 B C B = 0 A B C = A C B C
14 simp2l A 0 A B 0 B C B
15 14 recnd A 0 A B 0 B C B
16 15 mul02d A 0 A B 0 B C 0 B = 0
17 16 oveq1d A 0 A B 0 B C 0 B C = 0 C
18 15 5 mulcxplem A 0 A B 0 B C 0 C = B C 0 C
19 cxpcl B C B C
20 15 5 19 syl2anc A 0 A B 0 B C B C
21 0cn 0
22 cxpcl 0 C 0 C
23 21 5 22 sylancr A 0 A B 0 B C 0 C
24 20 23 mulcomd A 0 A B 0 B C B C 0 C = 0 C B C
25 18 24 eqtrd A 0 A B 0 B C 0 C = 0 C B C
26 17 25 eqtrd A 0 A B 0 B C 0 B C = 0 C B C
27 oveq1 A = 0 A B = 0 B
28 27 oveq1d A = 0 A B C = 0 B C
29 oveq1 A = 0 A C = 0 C
30 29 oveq1d A = 0 A C B C = 0 C B C
31 28 30 eqeq12d A = 0 A B C = A C B C 0 B C = 0 C B C
32 26 31 syl5ibrcom A 0 A B 0 B C A = 0 A B C = A C B C
33 32 a1dd A 0 A B 0 B C A = 0 B 0 A B C = A C B C
34 1 adantr A 0 A B 0 B C A 0 B 0 A
35 simpl1r A 0 A B 0 B C A 0 B 0 0 A
36 simprl A 0 A B 0 B C A 0 B 0 A 0
37 34 35 36 ne0gt0d A 0 A B 0 B C A 0 B 0 0 < A
38 34 37 elrpd A 0 A B 0 B C A 0 B 0 A +
39 14 adantr A 0 A B 0 B C A 0 B 0 B
40 simpl2r A 0 A B 0 B C A 0 B 0 0 B
41 simprr A 0 A B 0 B C A 0 B 0 B 0
42 39 40 41 ne0gt0d A 0 A B 0 B C A 0 B 0 0 < B
43 39 42 elrpd A 0 A B 0 B C A 0 B 0 B +
44 38 43 relogmuld A 0 A B 0 B C A 0 B 0 log A B = log A + log B
45 44 oveq2d A 0 A B 0 B C A 0 B 0 C log A B = C log A + log B
46 5 adantr A 0 A B 0 B C A 0 B 0 C
47 2 adantr A 0 A B 0 B C A 0 B 0 A
48 47 36 logcld A 0 A B 0 B C A 0 B 0 log A
49 15 adantr A 0 A B 0 B C A 0 B 0 B
50 49 41 logcld A 0 A B 0 B C A 0 B 0 log B
51 46 48 50 adddid A 0 A B 0 B C A 0 B 0 C log A + log B = C log A + C log B
52 45 51 eqtrd A 0 A B 0 B C A 0 B 0 C log A B = C log A + C log B
53 52 fveq2d A 0 A B 0 B C A 0 B 0 e C log A B = e C log A + C log B
54 46 48 mulcld A 0 A B 0 B C A 0 B 0 C log A
55 46 50 mulcld A 0 A B 0 B C A 0 B 0 C log B
56 efadd C log A C log B e C log A + C log B = e C log A e C log B
57 54 55 56 syl2anc A 0 A B 0 B C A 0 B 0 e C log A + C log B = e C log A e C log B
58 53 57 eqtrd A 0 A B 0 B C A 0 B 0 e C log A B = e C log A e C log B
59 47 49 mulcld A 0 A B 0 B C A 0 B 0 A B
60 47 49 36 41 mulne0d A 0 A B 0 B C A 0 B 0 A B 0
61 cxpef A B A B 0 C A B C = e C log A B
62 59 60 46 61 syl3anc A 0 A B 0 B C A 0 B 0 A B C = e C log A B
63 cxpef A A 0 C A C = e C log A
64 47 36 46 63 syl3anc A 0 A B 0 B C A 0 B 0 A C = e C log A
65 cxpef B B 0 C B C = e C log B
66 49 41 46 65 syl3anc A 0 A B 0 B C A 0 B 0 B C = e C log B
67 64 66 oveq12d A 0 A B 0 B C A 0 B 0 A C B C = e C log A e C log B
68 58 62 67 3eqtr4d A 0 A B 0 B C A 0 B 0 A B C = A C B C
69 68 exp32 A 0 A B 0 B C A 0 B 0 A B C = A C B C
70 33 69 pm2.61dne A 0 A B 0 B C B 0 A B C = A C B C
71 13 70 pm2.61dne A 0 A B 0 B C A B C = A C B C