Step |
Hyp |
Ref |
Expression |
1 |
|
simp1l |
|
2 |
1
|
recnd |
|
3 |
2
|
mul01d |
|
4 |
3
|
oveq1d |
|
5 |
|
simp3 |
|
6 |
2 5
|
mulcxplem |
|
7 |
4 6
|
eqtrd |
|
8 |
|
oveq2 |
|
9 |
8
|
oveq1d |
|
10 |
|
oveq1 |
|
11 |
10
|
oveq2d |
|
12 |
9 11
|
eqeq12d |
|
13 |
7 12
|
syl5ibrcom |
|
14 |
|
simp2l |
|
15 |
14
|
recnd |
|
16 |
15
|
mul02d |
|
17 |
16
|
oveq1d |
|
18 |
15 5
|
mulcxplem |
|
19 |
|
cxpcl |
|
20 |
15 5 19
|
syl2anc |
|
21 |
|
0cn |
|
22 |
|
cxpcl |
|
23 |
21 5 22
|
sylancr |
|
24 |
20 23
|
mulcomd |
|
25 |
18 24
|
eqtrd |
|
26 |
17 25
|
eqtrd |
|
27 |
|
oveq1 |
|
28 |
27
|
oveq1d |
|
29 |
|
oveq1 |
|
30 |
29
|
oveq1d |
|
31 |
28 30
|
eqeq12d |
|
32 |
26 31
|
syl5ibrcom |
|
33 |
32
|
a1dd |
|
34 |
1
|
adantr |
|
35 |
|
simpl1r |
|
36 |
|
simprl |
|
37 |
34 35 36
|
ne0gt0d |
|
38 |
34 37
|
elrpd |
|
39 |
14
|
adantr |
|
40 |
|
simpl2r |
|
41 |
|
simprr |
|
42 |
39 40 41
|
ne0gt0d |
|
43 |
39 42
|
elrpd |
|
44 |
38 43
|
relogmuld |
|
45 |
44
|
oveq2d |
|
46 |
5
|
adantr |
|
47 |
2
|
adantr |
|
48 |
47 36
|
logcld |
|
49 |
15
|
adantr |
|
50 |
49 41
|
logcld |
|
51 |
46 48 50
|
adddid |
|
52 |
45 51
|
eqtrd |
|
53 |
52
|
fveq2d |
|
54 |
46 48
|
mulcld |
|
55 |
46 50
|
mulcld |
|
56 |
|
efadd |
|
57 |
54 55 56
|
syl2anc |
|
58 |
53 57
|
eqtrd |
|
59 |
47 49
|
mulcld |
|
60 |
47 49 36 41
|
mulne0d |
|
61 |
|
cxpef |
|
62 |
59 60 46 61
|
syl3anc |
|
63 |
|
cxpef |
|
64 |
47 36 46 63
|
syl3anc |
|
65 |
|
cxpef |
|
66 |
49 41 46 65
|
syl3anc |
|
67 |
64 66
|
oveq12d |
|
68 |
58 62 67
|
3eqtr4d |
|
69 |
68
|
exp32 |
|
70 |
33 69
|
pm2.61dne |
|
71 |
13 70
|
pm2.61dne |
|