Metamath Proof Explorer


Theorem mulcxpd

Description: Complex exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses recxpcld.1 φ A
recxpcld.2 φ 0 A
recxpcld.3 φ B
mulcxpd.4 φ 0 B
mulcxpd.5 φ C
Assertion mulcxpd φ A B C = A C B C

Proof

Step Hyp Ref Expression
1 recxpcld.1 φ A
2 recxpcld.2 φ 0 A
3 recxpcld.3 φ B
4 mulcxpd.4 φ 0 B
5 mulcxpd.5 φ C
6 mulcxp A 0 A B 0 B C A B C = A C B C
7 1 2 3 4 5 6 syl221anc φ A B C = A C B C