Metamath Proof Explorer


Theorem muldivdir

Description: Distribution of division over addition with a multiplication. (Contributed by AV, 1-Jul-2021)

Ref Expression
Assertion muldivdir A B C C 0 C A + B C = A + B C

Proof

Step Hyp Ref Expression
1 simp3l A B C C 0 C
2 simp1 A B C C 0 A
3 1 2 mulcld A B C C 0 C A
4 divdir C A B C C 0 C A + B C = C A C + B C
5 3 4 syld3an1 A B C C 0 C A + B C = C A C + B C
6 3anass A C C 0 A C C 0
7 6 biimpri A C C 0 A C C 0
8 7 3adant2 A B C C 0 A C C 0
9 divcan3 A C C 0 C A C = A
10 8 9 syl A B C C 0 C A C = A
11 10 oveq1d A B C C 0 C A C + B C = A + B C
12 5 11 eqtrd A B C C 0 C A + B C = A + B C