Metamath Proof Explorer


Theorem muldvds1

Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion muldvds1 K M N K M N K N

Proof

Step Hyp Ref Expression
1 zmulcl K M K M
2 1 anim1i K M N K M N
3 2 3impa K M N K M N
4 3simpb K M N K N
5 zmulcl x M x M
6 5 ancoms M x x M
7 6 3ad2antl2 K M N x x M
8 zcn x x
9 zcn K K
10 zcn M M
11 mulass x K M x K M = x K M
12 mul32 x K M x K M = x M K
13 11 12 eqtr3d x K M x K M = x M K
14 8 9 10 13 syl3an x K M x K M = x M K
15 14 3coml K M x x K M = x M K
16 15 3expa K M x x K M = x M K
17 16 3adantl3 K M N x x K M = x M K
18 17 eqeq1d K M N x x K M = N x M K = N
19 18 biimpd K M N x x K M = N x M K = N
20 3 4 7 19 dvds1lem K M N K M N K N