Metamath Proof Explorer


Theorem muldvds2

Description: If a product divides an integer, so does one of its factors. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion muldvds2 K M N K M N M N

Proof

Step Hyp Ref Expression
1 zmulcl K M K M
2 1 anim1i K M N K M N
3 2 3impa K M N K M N
4 3simpc K M N M N
5 zmulcl x K x K
6 5 ancoms K x x K
7 6 3ad2antl1 K M N x x K
8 zcn x x
9 zcn K K
10 zcn M M
11 mulass x K M x K M = x K M
12 8 9 10 11 syl3an x K M x K M = x K M
13 12 3coml K M x x K M = x K M
14 13 3expa K M x x K M = x K M
15 14 3adantl3 K M N x x K M = x K M
16 15 eqeq1d K M N x x K M = N x K M = N
17 16 biimprd K M N x x K M = N x K M = N
18 3 4 7 17 dvds1lem K M N K M N M N