Metamath Proof Explorer


Theorem muleqadd

Description: Property of numbers whose product equals their sum. Equation 5 of Kreyszig p. 12. (Contributed by NM, 13-Nov-2006)

Ref Expression
Assertion muleqadd A B A B = A + B A 1 B 1 = 1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 mulsub A 1 B 1 A 1 B 1 = A B + 1 1 - A 1 + B 1
3 1 2 mpanr2 A 1 B A 1 B 1 = A B + 1 1 - A 1 + B 1
4 1 3 mpanl2 A B A 1 B 1 = A B + 1 1 - A 1 + B 1
5 1 mulid1i 1 1 = 1
6 5 oveq2i A B + 1 1 = A B + 1
7 6 a1i A B A B + 1 1 = A B + 1
8 mulid1 A A 1 = A
9 mulid1 B B 1 = B
10 8 9 oveqan12d A B A 1 + B 1 = A + B
11 7 10 oveq12d A B A B + 1 1 - A 1 + B 1 = A B + 1 - A + B
12 mulcl A B A B
13 addcl A B A + B
14 addsub A B 1 A + B A B + 1 - A + B = A B - A + B + 1
15 1 14 mp3an2 A B A + B A B + 1 - A + B = A B - A + B + 1
16 12 13 15 syl2anc A B A B + 1 - A + B = A B - A + B + 1
17 4 11 16 3eqtrd A B A 1 B 1 = A B - A + B + 1
18 17 eqeq1d A B A 1 B 1 = 1 A B - A + B + 1 = 1
19 12 13 subcld A B A B A + B
20 0cn 0
21 addcan2 A B A + B 0 1 A B - A + B + 1 = 0 + 1 A B A + B = 0
22 20 1 21 mp3an23 A B A + B A B - A + B + 1 = 0 + 1 A B A + B = 0
23 19 22 syl A B A B - A + B + 1 = 0 + 1 A B A + B = 0
24 1 addid2i 0 + 1 = 1
25 24 eqeq2i A B - A + B + 1 = 0 + 1 A B - A + B + 1 = 1
26 23 25 bitr3di A B A B A + B = 0 A B - A + B + 1 = 1
27 12 13 subeq0ad A B A B A + B = 0 A B = A + B
28 18 26 27 3bitr2rd A B A B = A + B A 1 B 1 = 1