Step |
Hyp |
Ref |
Expression |
1 |
|
nqercl |
|
2 |
|
nqercl |
|
3 |
|
mulpqnq |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
enqer |
|
6 |
5
|
a1i |
|
7 |
|
nqerrel |
|
8 |
7
|
adantr |
|
9 |
|
elpqn |
|
10 |
1 9
|
syl |
|
11 |
|
mulerpqlem |
|
12 |
11
|
3exp |
|
13 |
10 12
|
mpd |
|
14 |
13
|
imp |
|
15 |
8 14
|
mpbid |
|
16 |
|
nqerrel |
|
17 |
16
|
adantl |
|
18 |
|
elpqn |
|
19 |
2 18
|
syl |
|
20 |
|
mulerpqlem |
|
21 |
20
|
3exp |
|
22 |
19 21
|
mpd |
|
23 |
10 22
|
mpan9 |
|
24 |
17 23
|
mpbid |
|
25 |
|
mulcompq |
|
26 |
|
mulcompq |
|
27 |
24 25 26
|
3brtr3g |
|
28 |
6 15 27
|
ertrd |
|
29 |
|
mulpqf |
|
30 |
29
|
fovcl |
|
31 |
29
|
fovcl |
|
32 |
10 19 31
|
syl2an |
|
33 |
|
nqereq |
|
34 |
30 32 33
|
syl2anc |
|
35 |
28 34
|
mpbid |
|
36 |
4 35
|
eqtr4d |
|
37 |
|
0nnq |
|
38 |
|
nqerf |
|
39 |
38
|
fdmi |
|
40 |
39
|
eleq2i |
|
41 |
|
ndmfv |
|
42 |
40 41
|
sylnbir |
|
43 |
42
|
eleq1d |
|
44 |
37 43
|
mtbiri |
|
45 |
44
|
con4i |
|
46 |
39
|
eleq2i |
|
47 |
|
ndmfv |
|
48 |
46 47
|
sylnbir |
|
49 |
48
|
eleq1d |
|
50 |
37 49
|
mtbiri |
|
51 |
50
|
con4i |
|
52 |
45 51
|
anim12i |
|
53 |
|
mulnqf |
|
54 |
53
|
fdmi |
|
55 |
54
|
ndmov |
|
56 |
52 55
|
nsyl5 |
|
57 |
|
0nelxp |
|
58 |
39
|
eleq2i |
|
59 |
57 58
|
mtbir |
|
60 |
29
|
fdmi |
|
61 |
60
|
ndmov |
|
62 |
61
|
eleq1d |
|
63 |
59 62
|
mtbiri |
|
64 |
|
ndmfv |
|
65 |
63 64
|
syl |
|
66 |
56 65
|
eqtr4d |
|
67 |
36 66
|
pm2.61i |
|