Metamath Proof Explorer


Theorem mulerpq

Description: Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulerpq / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 A 𝑝𝑸 B

Proof

Step Hyp Ref Expression
1 nqercl A 𝑵 × 𝑵 / 𝑸 A 𝑸
2 nqercl B 𝑵 × 𝑵 / 𝑸 B 𝑸
3 mulpqnq / 𝑸 A 𝑸 / 𝑸 B 𝑸 / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
4 1 2 3 syl2an A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
5 enqer ~ 𝑸 Er 𝑵 × 𝑵
6 5 a1i A 𝑵 × 𝑵 B 𝑵 × 𝑵 ~ 𝑸 Er 𝑵 × 𝑵
7 nqerrel A 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A
8 7 adantr A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A
9 elpqn / 𝑸 A 𝑸 / 𝑸 A 𝑵 × 𝑵
10 1 9 syl A 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵
11 mulerpqlem A 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 B
12 11 3exp A 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 B
13 10 12 mpd A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 B
14 13 imp A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 / 𝑸 A A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 B
15 8 14 mpbid A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 B
16 nqerrel B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B
17 16 adantl A 𝑵 × 𝑵 B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B
18 elpqn / 𝑸 B 𝑸 / 𝑸 B 𝑵 × 𝑵
19 2 18 syl B 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵
20 mulerpqlem B 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B B 𝑝𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B 𝑝𝑸 / 𝑸 A
21 20 3exp B 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B B 𝑝𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B 𝑝𝑸 / 𝑸 A
22 19 21 mpd B 𝑵 × 𝑵 / 𝑸 A 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B B 𝑝𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B 𝑝𝑸 / 𝑸 A
23 10 22 mpan9 A 𝑵 × 𝑵 B 𝑵 × 𝑵 B ~ 𝑸 / 𝑸 B B 𝑝𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B 𝑝𝑸 / 𝑸 A
24 17 23 mpbid A 𝑵 × 𝑵 B 𝑵 × 𝑵 B 𝑝𝑸 / 𝑸 A ~ 𝑸 / 𝑸 B 𝑝𝑸 / 𝑸 A
25 mulcompq B 𝑝𝑸 / 𝑸 A = / 𝑸 A 𝑝𝑸 B
26 mulcompq / 𝑸 B 𝑝𝑸 / 𝑸 A = / 𝑸 A 𝑝𝑸 / 𝑸 B
27 24 25 26 3brtr3g A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
28 6 15 27 ertrd A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
29 mulpqf 𝑝𝑸 : 𝑵 × 𝑵 × 𝑵 × 𝑵 𝑵 × 𝑵
30 29 fovcl A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B 𝑵 × 𝑵
31 29 fovcl / 𝑸 A 𝑵 × 𝑵 / 𝑸 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 / 𝑸 B 𝑵 × 𝑵
32 10 19 31 syl2an A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 / 𝑸 B 𝑵 × 𝑵
33 nqereq A 𝑝𝑸 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 / 𝑸 B 𝑵 × 𝑵 A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B / 𝑸 A 𝑝𝑸 B = / 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
34 30 32 33 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B ~ 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B / 𝑸 A 𝑝𝑸 B = / 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
35 28 34 mpbid A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 B = / 𝑸 / 𝑸 A 𝑝𝑸 / 𝑸 B
36 4 35 eqtr4d A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 A 𝑝𝑸 B
37 0nnq ¬ 𝑸
38 nqerf / 𝑸 : 𝑵 × 𝑵 𝑸
39 38 fdmi dom / 𝑸 = 𝑵 × 𝑵
40 39 eleq2i A dom / 𝑸 A 𝑵 × 𝑵
41 ndmfv ¬ A dom / 𝑸 / 𝑸 A =
42 40 41 sylnbir ¬ A 𝑵 × 𝑵 / 𝑸 A =
43 42 eleq1d ¬ A 𝑵 × 𝑵 / 𝑸 A 𝑸 𝑸
44 37 43 mtbiri ¬ A 𝑵 × 𝑵 ¬ / 𝑸 A 𝑸
45 44 con4i / 𝑸 A 𝑸 A 𝑵 × 𝑵
46 39 eleq2i B dom / 𝑸 B 𝑵 × 𝑵
47 ndmfv ¬ B dom / 𝑸 / 𝑸 B =
48 46 47 sylnbir ¬ B 𝑵 × 𝑵 / 𝑸 B =
49 48 eleq1d ¬ B 𝑵 × 𝑵 / 𝑸 B 𝑸 𝑸
50 37 49 mtbiri ¬ B 𝑵 × 𝑵 ¬ / 𝑸 B 𝑸
51 50 con4i / 𝑸 B 𝑸 B 𝑵 × 𝑵
52 45 51 anim12i / 𝑸 A 𝑸 / 𝑸 B 𝑸 A 𝑵 × 𝑵 B 𝑵 × 𝑵
53 mulnqf 𝑸 : 𝑸 × 𝑸 𝑸
54 53 fdmi dom 𝑸 = 𝑸 × 𝑸
55 54 ndmov ¬ / 𝑸 A 𝑸 / 𝑸 B 𝑸 / 𝑸 A 𝑸 / 𝑸 B =
56 52 55 nsyl5 ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑸 / 𝑸 B =
57 0nelxp ¬ 𝑵 × 𝑵
58 39 eleq2i dom / 𝑸 𝑵 × 𝑵
59 57 58 mtbir ¬ dom / 𝑸
60 29 fdmi dom 𝑝𝑸 = 𝑵 × 𝑵 × 𝑵 × 𝑵
61 60 ndmov ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B =
62 61 eleq1d ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 A 𝑝𝑸 B dom / 𝑸 dom / 𝑸
63 59 62 mtbiri ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 ¬ A 𝑝𝑸 B dom / 𝑸
64 ndmfv ¬ A 𝑝𝑸 B dom / 𝑸 / 𝑸 A 𝑝𝑸 B =
65 63 64 syl ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑝𝑸 B =
66 56 65 eqtr4d ¬ A 𝑵 × 𝑵 B 𝑵 × 𝑵 / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 A 𝑝𝑸 B
67 36 66 pm2.61i / 𝑸 A 𝑸 / 𝑸 B = / 𝑸 A 𝑝𝑸 B