Metamath Proof Explorer


Theorem mulerpqlem

Description: Lemma for mulerpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulerpqlem A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B A 𝑝𝑸 C ~ 𝑸 B 𝑝𝑸 C

Proof

Step Hyp Ref Expression
1 xp1st A 𝑵 × 𝑵 1 st A 𝑵
2 1 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵
3 xp1st C 𝑵 × 𝑵 1 st C 𝑵
4 3 3ad2ant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵
5 mulclpi 1 st A 𝑵 1 st C 𝑵 1 st A 𝑵 1 st C 𝑵
6 2 4 5 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 1 st C 𝑵
7 xp2nd A 𝑵 × 𝑵 2 nd A 𝑵
8 7 3ad2ant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵
9 xp2nd C 𝑵 × 𝑵 2 nd C 𝑵
10 9 3ad2ant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd C 𝑵
11 mulclpi 2 nd A 𝑵 2 nd C 𝑵 2 nd A 𝑵 2 nd C 𝑵
12 8 10 11 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd A 𝑵 2 nd C 𝑵
13 xp1st B 𝑵 × 𝑵 1 st B 𝑵
14 13 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st B 𝑵
15 mulclpi 1 st B 𝑵 1 st C 𝑵 1 st B 𝑵 1 st C 𝑵
16 14 4 15 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st B 𝑵 1 st C 𝑵
17 xp2nd B 𝑵 × 𝑵 2 nd B 𝑵
18 17 3ad2ant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd B 𝑵
19 mulclpi 2 nd B 𝑵 2 nd C 𝑵 2 nd B 𝑵 2 nd C 𝑵
20 18 10 19 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 2 nd B 𝑵 2 nd C 𝑵
21 enqbreq 1 st A 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C 𝑵 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
22 6 12 16 20 21 syl22anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
23 mulpipq2 A 𝑵 × 𝑵 C 𝑵 × 𝑵 A 𝑝𝑸 C = 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C
24 23 3adant2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A 𝑝𝑸 C = 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C
25 mulpipq2 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B 𝑝𝑸 C = 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
26 25 3adant1 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 B 𝑝𝑸 C = 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
27 24 26 breq12d A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A 𝑝𝑸 C ~ 𝑸 B 𝑝𝑸 C 1 st A 𝑵 1 st C 2 nd A 𝑵 2 nd C ~ 𝑸 1 st B 𝑵 1 st C 2 nd B 𝑵 2 nd C
28 enqbreq2 A 𝑵 × 𝑵 B 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
29 28 3adant3 A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
30 mulclpi 1 st C 𝑵 2 nd C 𝑵 1 st C 𝑵 2 nd C 𝑵
31 4 10 30 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵 2 nd C 𝑵
32 mulclpi 1 st A 𝑵 2 nd B 𝑵 1 st A 𝑵 2 nd B 𝑵
33 2 18 32 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st A 𝑵 2 nd B 𝑵
34 mulcanpi 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
35 31 33 34 syl2anc A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 2 nd B = 1 st B 𝑵 2 nd A
36 mulcompi 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd C
37 fvex 1 st A V
38 fvex 2 nd B V
39 fvex 1 st C V
40 mulcompi x 𝑵 y = y 𝑵 x
41 mulasspi x 𝑵 y 𝑵 z = x 𝑵 y 𝑵 z
42 fvex 2 nd C V
43 37 38 39 40 41 42 caov4 1 st A 𝑵 2 nd B 𝑵 1 st C 𝑵 2 nd C = 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C
44 36 43 eqtri 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C
45 mulcompi 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 1 st B 𝑵 2 nd A 𝑵 1 st C 𝑵 2 nd C
46 fvex 1 st B V
47 fvex 2 nd A V
48 46 47 39 40 41 42 caov4 1 st B 𝑵 2 nd A 𝑵 1 st C 𝑵 2 nd C = 1 st B 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd C
49 mulcompi 1 st B 𝑵 1 st C 𝑵 2 nd A 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
50 45 48 49 3eqtri 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
51 44 50 eqeq12i 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
52 51 a1i A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 1 st C 𝑵 2 nd C 𝑵 1 st A 𝑵 2 nd B = 1 st C 𝑵 2 nd C 𝑵 1 st B 𝑵 2 nd A 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
53 29 35 52 3bitr2d A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B 1 st A 𝑵 1 st C 𝑵 2 nd B 𝑵 2 nd C = 2 nd A 𝑵 2 nd C 𝑵 1 st B 𝑵 1 st C
54 22 27 53 3bitr4rd A 𝑵 × 𝑵 B 𝑵 × 𝑵 C 𝑵 × 𝑵 A ~ 𝑸 B A 𝑝𝑸 C ~ 𝑸 B 𝑝𝑸 C