Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
|
oveq2 |
|
3 |
|
oveq2 |
|
4 |
2 3
|
oveq12d |
|
5 |
1 4
|
eqeq12d |
|
6 |
5
|
imbi2d |
|
7 |
|
oveq2 |
|
8 |
|
oveq2 |
|
9 |
|
oveq2 |
|
10 |
8 9
|
oveq12d |
|
11 |
7 10
|
eqeq12d |
|
12 |
11
|
imbi2d |
|
13 |
|
oveq2 |
|
14 |
|
oveq2 |
|
15 |
|
oveq2 |
|
16 |
14 15
|
oveq12d |
|
17 |
13 16
|
eqeq12d |
|
18 |
17
|
imbi2d |
|
19 |
|
oveq2 |
|
20 |
|
oveq2 |
|
21 |
|
oveq2 |
|
22 |
20 21
|
oveq12d |
|
23 |
19 22
|
eqeq12d |
|
24 |
23
|
imbi2d |
|
25 |
|
mulcl |
|
26 |
|
exp0 |
|
27 |
25 26
|
syl |
|
28 |
|
exp0 |
|
29 |
|
exp0 |
|
30 |
28 29
|
oveqan12d |
|
31 |
|
1t1e1 |
|
32 |
30 31
|
eqtrdi |
|
33 |
27 32
|
eqtr4d |
|
34 |
|
expp1 |
|
35 |
25 34
|
sylan |
|
36 |
35
|
adantr |
|
37 |
|
oveq1 |
|
38 |
|
expcl |
|
39 |
|
expcl |
|
40 |
38 39
|
anim12i |
|
41 |
40
|
anandirs |
|
42 |
|
simpl |
|
43 |
|
mul4 |
|
44 |
41 42 43
|
syl2anc |
|
45 |
|
expp1 |
|
46 |
45
|
adantlr |
|
47 |
|
expp1 |
|
48 |
47
|
adantll |
|
49 |
46 48
|
oveq12d |
|
50 |
44 49
|
eqtr4d |
|
51 |
37 50
|
sylan9eqr |
|
52 |
36 51
|
eqtrd |
|
53 |
52
|
exp31 |
|
54 |
53
|
com12 |
|
55 |
54
|
a2d |
|
56 |
6 12 18 24 33 55
|
nn0ind |
|
57 |
56
|
expdcom |
|
58 |
57
|
3imp |
|