Metamath Proof Explorer


Theorem mulexpd

Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
mulexpd.2 φ B
mulexpd.3 φ N 0
Assertion mulexpd φ A B N = A N B N

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 mulexpd.2 φ B
3 mulexpd.3 φ N 0
4 mulexp A B N 0 A B N = A N B N
5 1 2 3 4 syl3anc φ A B N = A N B N