Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
mulexpd
Metamath Proof Explorer
Description: Positive integer exponentiation of a product. Proposition 10-4.2(c) of
Gleason p. 135, restricted to nonnegative integer exponents.
(Contributed by Mario Carneiro , 28-May-2016)
Ref
Expression
Hypotheses
expcld.1
⊢ φ → A ∈ ℂ
mulexpd.2
⊢ φ → B ∈ ℂ
mulexpd.3
⊢ φ → N ∈ ℕ 0
Assertion
mulexpd
⊢ φ → A ⁢ B N = A N ⁢ B N
Proof
Step
Hyp
Ref
Expression
1
expcld.1
⊢ φ → A ∈ ℂ
2
mulexpd.2
⊢ φ → B ∈ ℂ
3
mulexpd.3
⊢ φ → N ∈ ℕ 0
4
mulexp
⊢ A ∈ ℂ ∧ B ∈ ℂ ∧ N ∈ ℕ 0 → A ⁢ B N = A N ⁢ B N
5
1 2 3 4
syl3anc
⊢ φ → A ⁢ B N = A N ⁢ B N