Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0nn |
|
2 |
|
simpl |
|
3 |
|
simpl |
|
4 |
2 3
|
anim12i |
|
5 |
|
mulexp |
|
6 |
5
|
3expa |
|
7 |
4 6
|
sylan |
|
8 |
|
simplll |
|
9 |
|
simplrl |
|
10 |
8 9
|
mulcld |
|
11 |
|
recn |
|
12 |
11
|
ad2antrl |
|
13 |
|
nnnn0 |
|
14 |
13
|
ad2antll |
|
15 |
|
expneg2 |
|
16 |
10 12 14 15
|
syl3anc |
|
17 |
|
expneg2 |
|
18 |
8 12 14 17
|
syl3anc |
|
19 |
|
expneg2 |
|
20 |
9 12 14 19
|
syl3anc |
|
21 |
18 20
|
oveq12d |
|
22 |
|
mulexp |
|
23 |
8 9 14 22
|
syl3anc |
|
24 |
23
|
oveq2d |
|
25 |
|
1t1e1 |
|
26 |
25
|
oveq1i |
|
27 |
24 26
|
eqtr4di |
|
28 |
|
expcl |
|
29 |
8 14 28
|
syl2anc |
|
30 |
|
simpllr |
|
31 |
|
nnz |
|
32 |
31
|
ad2antll |
|
33 |
|
expne0i |
|
34 |
8 30 32 33
|
syl3anc |
|
35 |
|
expcl |
|
36 |
9 14 35
|
syl2anc |
|
37 |
|
simplrr |
|
38 |
|
expne0i |
|
39 |
9 37 32 38
|
syl3anc |
|
40 |
|
ax-1cn |
|
41 |
|
divmuldiv |
|
42 |
40 40 41
|
mpanl12 |
|
43 |
29 34 36 39 42
|
syl22anc |
|
44 |
27 43
|
eqtr4d |
|
45 |
21 44
|
eqtr4d |
|
46 |
16 45
|
eqtr4d |
|
47 |
7 46
|
jaodan |
|
48 |
1 47
|
sylan2b |
|
49 |
48
|
3impa |
|