Metamath Proof Explorer


Theorem mulg0

Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg0.b B = Base G
mulg0.o 0 ˙ = 0 G
mulg0.t · ˙ = G
Assertion mulg0 X B 0 · ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 mulg0.b B = Base G
2 mulg0.o 0 ˙ = 0 G
3 mulg0.t · ˙ = G
4 0z 0
5 eqid + G = + G
6 eqid inv g G = inv g G
7 eqid seq 1 + G × X = seq 1 + G × X
8 1 5 2 6 3 7 mulgval 0 X B 0 · ˙ X = if 0 = 0 0 ˙ if 0 < 0 seq 1 + G × X 0 inv g G seq 1 + G × X 0
9 eqid 0 = 0
10 9 iftruei if 0 = 0 0 ˙ if 0 < 0 seq 1 + G × X 0 inv g G seq 1 + G × X 0 = 0 ˙
11 8 10 eqtrdi 0 X B 0 · ˙ X = 0 ˙
12 4 11 mpan X B 0 · ˙ X = 0 ˙