Metamath Proof Explorer


Theorem mulg1

Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b B = Base G
mulg1.m · ˙ = G
Assertion mulg1 X B 1 · ˙ X = X

Proof

Step Hyp Ref Expression
1 mulg1.b B = Base G
2 mulg1.m · ˙ = G
3 1nn 1
4 eqid + G = + G
5 eqid seq 1 + G × X = seq 1 + G × X
6 1 4 2 5 mulgnn 1 X B 1 · ˙ X = seq 1 + G × X 1
7 3 6 mpan X B 1 · ˙ X = seq 1 + G × X 1
8 1z 1
9 fvconst2g X B 1 × X 1 = X
10 3 9 mpan2 X B × X 1 = X
11 8 10 seq1i X B seq 1 + G × X 1 = X
12 7 11 eqtrd X B 1 · ˙ X = X