Metamath Proof Explorer


Theorem mulg2

Description: Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses mulg1.b B = Base G
mulg1.m · ˙ = G
mulgnnp1.p + ˙ = + G
Assertion mulg2 X B 2 · ˙ X = X + ˙ X

Proof

Step Hyp Ref Expression
1 mulg1.b B = Base G
2 mulg1.m · ˙ = G
3 mulgnnp1.p + ˙ = + G
4 df-2 2 = 1 + 1
5 4 oveq1i 2 · ˙ X = 1 + 1 · ˙ X
6 1nn 1
7 1 2 3 mulgnnp1 1 X B 1 + 1 · ˙ X = 1 · ˙ X + ˙ X
8 6 7 mpan X B 1 + 1 · ˙ X = 1 · ˙ X + ˙ X
9 5 8 eqtrid X B 2 · ˙ X = 1 · ˙ X + ˙ X
10 1 2 mulg1 X B 1 · ˙ X = X
11 10 oveq1d X B 1 · ˙ X + ˙ X = X + ˙ X
12 9 11 eqtrd X B 2 · ˙ X = X + ˙ X