Metamath Proof Explorer


Theorem mulgcddvds

Description: One half of rpmulgcd2 , which does not need the coprimality assumption. (Contributed by Mario Carneiro, 2-Jul-2015)

Ref Expression
Assertion mulgcddvds K M N K gcd M N K gcd M K gcd N

Proof

Step Hyp Ref Expression
1 simp1 K M N K
2 simp2 K M N M
3 simp3 K M N N
4 2 3 zmulcld K M N M N
5 1 4 gcdcld K M N K gcd M N 0
6 5 nn0zd K M N K gcd M N
7 dvds0 K gcd M N K gcd M N 0
8 6 7 syl K M N K gcd M N 0
9 8 adantr K M N K gcd N = 0 K gcd M N 0
10 oveq2 K gcd N = 0 K gcd M K gcd N = K gcd M 0
11 1 2 gcdcld K M N K gcd M 0
12 11 nn0cnd K M N K gcd M
13 12 mul01d K M N K gcd M 0 = 0
14 10 13 sylan9eqr K M N K gcd N = 0 K gcd M K gcd N = 0
15 9 14 breqtrrd K M N K gcd N = 0 K gcd M N K gcd M K gcd N
16 6 adantr K M N K gcd N 0 K gcd M N
17 16 zcnd K M N K gcd N 0 K gcd M N
18 1 3 gcdcld K M N K gcd N 0
19 18 nn0zd K M N K gcd N
20 19 adantr K M N K gcd N 0 K gcd N
21 20 zcnd K M N K gcd N 0 K gcd N
22 simpr K M N K gcd N 0 K gcd N 0
23 17 21 22 divcan1d K M N K gcd N 0 K gcd M N K gcd N K gcd N = K gcd M N
24 gcddvds K M N K gcd M N K K gcd M N M N
25 1 4 24 syl2anc K M N K gcd M N K K gcd M N M N
26 25 simpld K M N K gcd M N K
27 6 1 19 26 dvdsmultr1d K M N K gcd M N K K gcd N
28 27 adantr K M N K gcd N 0 K gcd M N K K gcd N
29 23 28 eqbrtrd K M N K gcd N 0 K gcd M N K gcd N K gcd N K K gcd N
30 gcddvds K N K gcd N K K gcd N N
31 1 3 30 syl2anc K M N K gcd N K K gcd N N
32 31 simpld K M N K gcd N K
33 31 simprd K M N K gcd N N
34 dvdsmultr2 K gcd N M N K gcd N N K gcd N M N
35 19 2 3 34 syl3anc K M N K gcd N N K gcd N M N
36 33 35 mpd K M N K gcd N M N
37 dvdsgcd K gcd N K M N K gcd N K K gcd N M N K gcd N K gcd M N
38 19 1 4 37 syl3anc K M N K gcd N K K gcd N M N K gcd N K gcd M N
39 32 36 38 mp2and K M N K gcd N K gcd M N
40 39 adantr K M N K gcd N 0 K gcd N K gcd M N
41 dvdsval2 K gcd N K gcd N 0 K gcd M N K gcd N K gcd M N K gcd M N K gcd N
42 20 22 16 41 syl3anc K M N K gcd N 0 K gcd N K gcd M N K gcd M N K gcd N
43 40 42 mpbid K M N K gcd N 0 K gcd M N K gcd N
44 1 adantr K M N K gcd N 0 K
45 dvdsmulcr K gcd M N K gcd N K K gcd N K gcd N 0 K gcd M N K gcd N K gcd N K K gcd N K gcd M N K gcd N K
46 43 44 20 22 45 syl112anc K M N K gcd N 0 K gcd M N K gcd N K gcd N K K gcd N K gcd M N K gcd N K
47 29 46 mpbid K M N K gcd N 0 K gcd M N K gcd N K
48 nn0abscl M M 0
49 2 48 syl K M N M 0
50 49 nn0zd K M N M
51 dvdsmultr2 K gcd M N M K K gcd M N K K gcd M N M K
52 6 50 1 51 syl3anc K M N K gcd M N K K gcd M N M K
53 26 52 mpd K M N K gcd M N M K
54 50 3 zmulcld K M N M N
55 25 simprd K M N K gcd M N M N
56 iddvds M M M
57 2 56 syl K M N M M
58 dvdsabsb M M M M M M
59 2 2 58 syl2anc K M N M M M M
60 57 59 mpbid K M N M M
61 dvdsmulc M M N M M M N M N
62 2 50 3 61 syl3anc K M N M M M N M N
63 60 62 mpd K M N M N M N
64 6 4 54 55 63 dvdstrd K M N K gcd M N M N
65 50 1 zmulcld K M N M K
66 dvdsgcd K gcd M N M K M N K gcd M N M K K gcd M N M N K gcd M N M K gcd M N
67 6 65 54 66 syl3anc K M N K gcd M N M K K gcd M N M N K gcd M N M K gcd M N
68 53 64 67 mp2and K M N K gcd M N M K gcd M N
69 18 nn0red K M N K gcd N
70 18 nn0ge0d K M N 0 K gcd N
71 69 70 absidd K M N K gcd N = K gcd N
72 71 oveq2d K M N M K gcd N = M K gcd N
73 2 zcnd K M N M
74 18 nn0cnd K M N K gcd N
75 73 74 absmuld K M N M K gcd N = M K gcd N
76 mulgcd M 0 K N M K gcd M N = M K gcd N
77 49 1 3 76 syl3anc K M N M K gcd M N = M K gcd N
78 72 75 77 3eqtr4d K M N M K gcd N = M K gcd M N
79 68 78 breqtrrd K M N K gcd M N M K gcd N
80 2 19 zmulcld K M N M K gcd N
81 dvdsabsb K gcd M N M K gcd N K gcd M N M K gcd N K gcd M N M K gcd N
82 6 80 81 syl2anc K M N K gcd M N M K gcd N K gcd M N M K gcd N
83 79 82 mpbird K M N K gcd M N M K gcd N
84 83 adantr K M N K gcd N 0 K gcd M N M K gcd N
85 23 84 eqbrtrd K M N K gcd N 0 K gcd M N K gcd N K gcd N M K gcd N
86 2 adantr K M N K gcd N 0 M
87 dvdsmulcr K gcd M N K gcd N M K gcd N K gcd N 0 K gcd M N K gcd N K gcd N M K gcd N K gcd M N K gcd N M
88 43 86 20 22 87 syl112anc K M N K gcd N 0 K gcd M N K gcd N K gcd N M K gcd N K gcd M N K gcd N M
89 85 88 mpbid K M N K gcd N 0 K gcd M N K gcd N M
90 dvdsgcd K gcd M N K gcd N K M K gcd M N K gcd N K K gcd M N K gcd N M K gcd M N K gcd N K gcd M
91 43 44 86 90 syl3anc K M N K gcd N 0 K gcd M N K gcd N K K gcd M N K gcd N M K gcd M N K gcd N K gcd M
92 47 89 91 mp2and K M N K gcd N 0 K gcd M N K gcd N K gcd M
93 11 nn0zd K M N K gcd M
94 93 adantr K M N K gcd N 0 K gcd M
95 dvdsmulc K gcd M N K gcd N K gcd M K gcd N K gcd M N K gcd N K gcd M K gcd M N K gcd N K gcd N K gcd M K gcd N
96 43 94 20 95 syl3anc K M N K gcd N 0 K gcd M N K gcd N K gcd M K gcd M N K gcd N K gcd N K gcd M K gcd N
97 92 96 mpd K M N K gcd N 0 K gcd M N K gcd N K gcd N K gcd M K gcd N
98 23 97 eqbrtrrd K M N K gcd N 0 K gcd M N K gcd M K gcd N
99 15 98 pm2.61dane K M N K gcd M N K gcd M K gcd N