Metamath Proof Explorer


Theorem mulgcl

Description: Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
Assertion mulgcl G Grp N X B N · ˙ X B

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 eqid + G = + G
4 id G Grp G Grp
5 ssidd G Grp B B
6 1 3 grpcl G Grp x B y B x + G y B
7 eqid 0 G = 0 G
8 1 7 grpidcl G Grp 0 G B
9 eqid inv g G = inv g G
10 1 9 grpinvcl G Grp x B inv g G x B
11 1 2 3 4 5 6 7 8 9 10 mulgsubcl G Grp N X B N · ˙ X B