Metamath Proof Explorer


Theorem mulgcld

Description: Deduction associated with mulgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses mulgcld.1 B = Base G
mulgcld.2 · ˙ = G
mulgcld.3 φ G Grp
mulgcld.4 φ N
mulgcld.5 φ X B
Assertion mulgcld φ N · ˙ X B

Proof

Step Hyp Ref Expression
1 mulgcld.1 B = Base G
2 mulgcld.2 · ˙ = G
3 mulgcld.3 φ G Grp
4 mulgcld.4 φ N
5 mulgcld.5 φ X B
6 1 2 mulgcl G Grp N X B N · ˙ X B
7 3 4 5 6 syl3anc φ N · ˙ X B