Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnndir.b |
|
2 |
|
mulgnndir.t |
|
3 |
|
mulgnndir.p |
|
4 |
1 2 3
|
mulgdirlem |
|
5 |
4
|
3expa |
|
6 |
|
simpll |
|
7 |
|
simpr2 |
|
8 |
7
|
adantr |
|
9 |
8
|
znegcld |
|
10 |
|
simpr1 |
|
11 |
10
|
adantr |
|
12 |
11
|
znegcld |
|
13 |
|
simplr3 |
|
14 |
11
|
zcnd |
|
15 |
14
|
negcld |
|
16 |
8
|
zcnd |
|
17 |
16
|
negcld |
|
18 |
14 16
|
negdid |
|
19 |
15 17 18
|
comraddd |
|
20 |
|
simpr |
|
21 |
19 20
|
eqeltrrd |
|
22 |
1 2 3
|
mulgdirlem |
|
23 |
6 9 12 13 21 22
|
syl131anc |
|
24 |
19
|
oveq1d |
|
25 |
10 7
|
zaddcld |
|
26 |
25
|
adantr |
|
27 |
|
eqid |
|
28 |
1 2 27
|
mulgneg |
|
29 |
6 26 13 28
|
syl3anc |
|
30 |
24 29
|
eqtr3d |
|
31 |
1 2 27
|
mulgneg |
|
32 |
6 8 13 31
|
syl3anc |
|
33 |
1 2 27
|
mulgneg |
|
34 |
6 11 13 33
|
syl3anc |
|
35 |
32 34
|
oveq12d |
|
36 |
1 2
|
mulgcl |
|
37 |
6 11 13 36
|
syl3anc |
|
38 |
1 2
|
mulgcl |
|
39 |
6 8 13 38
|
syl3anc |
|
40 |
1 3 27
|
grpinvadd |
|
41 |
6 37 39 40
|
syl3anc |
|
42 |
35 41
|
eqtr4d |
|
43 |
23 30 42
|
3eqtr3d |
|
44 |
43
|
fveq2d |
|
45 |
1 2
|
mulgcl |
|
46 |
6 26 13 45
|
syl3anc |
|
47 |
1 27
|
grpinvinv |
|
48 |
6 46 47
|
syl2anc |
|
49 |
1 3
|
grpcl |
|
50 |
6 37 39 49
|
syl3anc |
|
51 |
1 27
|
grpinvinv |
|
52 |
6 50 51
|
syl2anc |
|
53 |
44 48 52
|
3eqtr3d |
|
54 |
|
elznn0 |
|
55 |
54
|
simprbi |
|
56 |
25 55
|
syl |
|
57 |
5 53 56
|
mpjaodan |
|