Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnndir.b |
|
2 |
|
mulgnndir.t |
|
3 |
|
mulgnndir.p |
|
4 |
|
simpl1 |
|
5 |
4
|
grpmndd |
|
6 |
|
simprl |
|
7 |
|
simprr |
|
8 |
|
simpl23 |
|
9 |
1 2 3
|
mulgnn0dir |
|
10 |
5 6 7 8 9
|
syl13anc |
|
11 |
10
|
anassrs |
|
12 |
|
simpl1 |
|
13 |
|
simp22 |
|
14 |
13
|
adantr |
|
15 |
|
simpl23 |
|
16 |
|
eqid |
|
17 |
1 2 16
|
mulgneg |
|
18 |
12 14 15 17
|
syl3anc |
|
19 |
18
|
oveq1d |
|
20 |
1 2
|
mulgcl |
|
21 |
12 14 15 20
|
syl3anc |
|
22 |
|
eqid |
|
23 |
1 3 22 16
|
grplinv |
|
24 |
12 21 23
|
syl2anc |
|
25 |
19 24
|
eqtrd |
|
26 |
25
|
oveq2d |
|
27 |
|
simpl3 |
|
28 |
|
nn0z |
|
29 |
27 28
|
syl |
|
30 |
1 2
|
mulgcl |
|
31 |
12 29 15 30
|
syl3anc |
|
32 |
1 3 22
|
grprid |
|
33 |
12 31 32
|
syl2anc |
|
34 |
26 33
|
eqtrd |
|
35 |
|
nn0z |
|
36 |
35
|
ad2antll |
|
37 |
1 2
|
mulgcl |
|
38 |
12 36 15 37
|
syl3anc |
|
39 |
1 3
|
grpass |
|
40 |
12 31 38 21 39
|
syl13anc |
|
41 |
12
|
grpmndd |
|
42 |
|
simprr |
|
43 |
1 2 3
|
mulgnn0dir |
|
44 |
41 27 42 15 43
|
syl13anc |
|
45 |
|
simp21 |
|
46 |
45
|
zcnd |
|
47 |
13
|
zcnd |
|
48 |
46 47
|
addcld |
|
49 |
48
|
adantr |
|
50 |
47
|
adantr |
|
51 |
49 50
|
negsubd |
|
52 |
46
|
adantr |
|
53 |
52 50
|
pncand |
|
54 |
51 53
|
eqtrd |
|
55 |
54
|
oveq1d |
|
56 |
44 55
|
eqtr3d |
|
57 |
56
|
oveq1d |
|
58 |
40 57
|
eqtr3d |
|
59 |
34 58
|
eqtr3d |
|
60 |
59
|
anassrs |
|
61 |
|
elznn0 |
|
62 |
61
|
simprbi |
|
63 |
13 62
|
syl |
|
64 |
63
|
adantr |
|
65 |
11 60 64
|
mpjaodan |
|
66 |
|
simpl1 |
|
67 |
45
|
adantr |
|
68 |
|
simpl23 |
|
69 |
1 2
|
mulgcl |
|
70 |
66 67 68 69
|
syl3anc |
|
71 |
67
|
znegcld |
|
72 |
1 2
|
mulgcl |
|
73 |
66 71 68 72
|
syl3anc |
|
74 |
28
|
3ad2ant3 |
|
75 |
74
|
adantr |
|
76 |
66 75 68 30
|
syl3anc |
|
77 |
1 3
|
grpass |
|
78 |
66 70 73 76 77
|
syl13anc |
|
79 |
1 2 16
|
mulgneg |
|
80 |
66 67 68 79
|
syl3anc |
|
81 |
80
|
oveq2d |
|
82 |
1 3 22 16
|
grprinv |
|
83 |
66 70 82
|
syl2anc |
|
84 |
81 83
|
eqtrd |
|
85 |
84
|
oveq1d |
|
86 |
1 3 22
|
grplid |
|
87 |
66 76 86
|
syl2anc |
|
88 |
85 87
|
eqtrd |
|
89 |
66
|
grpmndd |
|
90 |
|
simpr |
|
91 |
|
simpl3 |
|
92 |
1 2 3
|
mulgnn0dir |
|
93 |
89 90 91 68 92
|
syl13anc |
|
94 |
46
|
adantr |
|
95 |
94
|
negcld |
|
96 |
48
|
adantr |
|
97 |
95 96
|
addcomd |
|
98 |
96 94
|
negsubd |
|
99 |
47
|
adantr |
|
100 |
94 99
|
pncan2d |
|
101 |
97 98 100
|
3eqtrd |
|
102 |
101
|
oveq1d |
|
103 |
93 102
|
eqtr3d |
|
104 |
103
|
oveq2d |
|
105 |
78 88 104
|
3eqtr3d |
|
106 |
|
elznn0 |
|
107 |
106
|
simprbi |
|
108 |
45 107
|
syl |
|
109 |
65 105 108
|
mpjaodan |
|