| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnndir.b |  | 
						
							| 2 |  | mulgnndir.t |  | 
						
							| 3 |  | mulgnndir.p |  | 
						
							| 4 |  | simpl1 |  | 
						
							| 5 | 4 | grpmndd |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | simprr |  | 
						
							| 8 |  | simpl23 |  | 
						
							| 9 | 1 2 3 | mulgnn0dir |  | 
						
							| 10 | 5 6 7 8 9 | syl13anc |  | 
						
							| 11 | 10 | anassrs |  | 
						
							| 12 |  | simpl1 |  | 
						
							| 13 |  | simp22 |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simpl23 |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 | 1 2 16 | mulgneg |  | 
						
							| 18 | 12 14 15 17 | syl3anc |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 | 1 2 | mulgcl |  | 
						
							| 21 | 12 14 15 20 | syl3anc |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 | 1 3 22 16 | grplinv |  | 
						
							| 24 | 12 21 23 | syl2anc |  | 
						
							| 25 | 19 24 | eqtrd |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 |  | simpl3 |  | 
						
							| 28 |  | nn0z |  | 
						
							| 29 | 27 28 | syl |  | 
						
							| 30 | 1 2 | mulgcl |  | 
						
							| 31 | 12 29 15 30 | syl3anc |  | 
						
							| 32 | 1 3 22 | grprid |  | 
						
							| 33 | 12 31 32 | syl2anc |  | 
						
							| 34 | 26 33 | eqtrd |  | 
						
							| 35 |  | nn0z |  | 
						
							| 36 | 35 | ad2antll |  | 
						
							| 37 | 1 2 | mulgcl |  | 
						
							| 38 | 12 36 15 37 | syl3anc |  | 
						
							| 39 | 1 3 | grpass |  | 
						
							| 40 | 12 31 38 21 39 | syl13anc |  | 
						
							| 41 | 12 | grpmndd |  | 
						
							| 42 |  | simprr |  | 
						
							| 43 | 1 2 3 | mulgnn0dir |  | 
						
							| 44 | 41 27 42 15 43 | syl13anc |  | 
						
							| 45 |  | simp21 |  | 
						
							| 46 | 45 | zcnd |  | 
						
							| 47 | 13 | zcnd |  | 
						
							| 48 | 46 47 | addcld |  | 
						
							| 49 | 48 | adantr |  | 
						
							| 50 | 47 | adantr |  | 
						
							| 51 | 49 50 | negsubd |  | 
						
							| 52 | 46 | adantr |  | 
						
							| 53 | 52 50 | pncand |  | 
						
							| 54 | 51 53 | eqtrd |  | 
						
							| 55 | 54 | oveq1d |  | 
						
							| 56 | 44 55 | eqtr3d |  | 
						
							| 57 | 56 | oveq1d |  | 
						
							| 58 | 40 57 | eqtr3d |  | 
						
							| 59 | 34 58 | eqtr3d |  | 
						
							| 60 | 59 | anassrs |  | 
						
							| 61 |  | elznn0 |  | 
						
							| 62 | 61 | simprbi |  | 
						
							| 63 | 13 62 | syl |  | 
						
							| 64 | 63 | adantr |  | 
						
							| 65 | 11 60 64 | mpjaodan |  | 
						
							| 66 |  | simpl1 |  | 
						
							| 67 | 45 | adantr |  | 
						
							| 68 |  | simpl23 |  | 
						
							| 69 | 1 2 | mulgcl |  | 
						
							| 70 | 66 67 68 69 | syl3anc |  | 
						
							| 71 | 67 | znegcld |  | 
						
							| 72 | 1 2 | mulgcl |  | 
						
							| 73 | 66 71 68 72 | syl3anc |  | 
						
							| 74 | 28 | 3ad2ant3 |  | 
						
							| 75 | 74 | adantr |  | 
						
							| 76 | 66 75 68 30 | syl3anc |  | 
						
							| 77 | 1 3 | grpass |  | 
						
							| 78 | 66 70 73 76 77 | syl13anc |  | 
						
							| 79 | 1 2 16 | mulgneg |  | 
						
							| 80 | 66 67 68 79 | syl3anc |  | 
						
							| 81 | 80 | oveq2d |  | 
						
							| 82 | 1 3 22 16 | grprinv |  | 
						
							| 83 | 66 70 82 | syl2anc |  | 
						
							| 84 | 81 83 | eqtrd |  | 
						
							| 85 | 84 | oveq1d |  | 
						
							| 86 | 1 3 22 | grplid |  | 
						
							| 87 | 66 76 86 | syl2anc |  | 
						
							| 88 | 85 87 | eqtrd |  | 
						
							| 89 | 66 | grpmndd |  | 
						
							| 90 |  | simpr |  | 
						
							| 91 |  | simpl3 |  | 
						
							| 92 | 1 2 3 | mulgnn0dir |  | 
						
							| 93 | 89 90 91 68 92 | syl13anc |  | 
						
							| 94 | 46 | adantr |  | 
						
							| 95 | 94 | negcld |  | 
						
							| 96 | 48 | adantr |  | 
						
							| 97 | 95 96 | addcomd |  | 
						
							| 98 | 96 94 | negsubd |  | 
						
							| 99 | 47 | adantr |  | 
						
							| 100 | 94 99 | pncan2d |  | 
						
							| 101 | 97 98 100 | 3eqtrd |  | 
						
							| 102 | 101 | oveq1d |  | 
						
							| 103 | 93 102 | eqtr3d |  | 
						
							| 104 | 103 | oveq2d |  | 
						
							| 105 | 78 88 104 | 3eqtr3d |  | 
						
							| 106 |  | elznn0 |  | 
						
							| 107 | 106 | simprbi |  | 
						
							| 108 | 45 107 | syl |  | 
						
							| 109 | 65 105 108 | mpjaodan |  |