Metamath Proof Explorer


Theorem mulge0

Description: The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion mulge0 A 0 A B 0 B 0 A B

Proof

Step Hyp Ref Expression
1 0red A B 0
2 simpl A B A
3 1 2 leloed A B 0 A 0 < A 0 = A
4 simpr A B B
5 1 4 leloed A B 0 B 0 < B 0 = B
6 3 5 anbi12d A B 0 A 0 B 0 < A 0 = A 0 < B 0 = B
7 0red A B 0 < A 0 < B 0
8 simpll A B 0 < A 0 < B A
9 simplr A B 0 < A 0 < B B
10 8 9 remulcld A B 0 < A 0 < B A B
11 mulgt0 A 0 < A B 0 < B 0 < A B
12 11 an4s A B 0 < A 0 < B 0 < A B
13 7 10 12 ltled A B 0 < A 0 < B 0 A B
14 13 ex A B 0 < A 0 < B 0 A B
15 0re 0
16 leid 0 0 0
17 15 16 ax-mp 0 0
18 4 recnd A B B
19 18 mul02d A B 0 B = 0
20 17 19 breqtrrid A B 0 0 B
21 oveq1 0 = A 0 B = A B
22 21 breq2d 0 = A 0 0 B 0 A B
23 20 22 syl5ibcom A B 0 = A 0 A B
24 23 adantrd A B 0 = A 0 < B 0 A B
25 2 recnd A B A
26 25 mul01d A B A 0 = 0
27 17 26 breqtrrid A B 0 A 0
28 oveq2 0 = B A 0 = A B
29 28 breq2d 0 = B 0 A 0 0 A B
30 27 29 syl5ibcom A B 0 = B 0 A B
31 30 adantld A B 0 < A 0 = B 0 A B
32 30 adantld A B 0 = A 0 = B 0 A B
33 14 24 31 32 ccased A B 0 < A 0 = A 0 < B 0 = B 0 A B
34 6 33 sylbid A B 0 A 0 B 0 A B
35 34 imp A B 0 A 0 B 0 A B
36 35 an4s A 0 A B 0 B 0 A B