Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
|
2 |
|
0re |
|
3 |
|
ltnle |
|
4 |
2 3
|
mpan |
|
5 |
4
|
adantr |
|
6 |
|
ltnle |
|
7 |
2 6
|
mpan |
|
8 |
7
|
adantl |
|
9 |
5 8
|
orbi12d |
|
10 |
9
|
adantr |
|
11 |
|
ltle |
|
12 |
2 11
|
mpan |
|
13 |
12
|
imp |
|
14 |
13
|
ad2ant2rl |
|
15 |
|
remulcl |
|
16 |
15
|
adantr |
|
17 |
|
simprl |
|
18 |
|
simpll |
|
19 |
|
simprr |
|
20 |
|
divge0 |
|
21 |
16 17 18 19 20
|
syl22anc |
|
22 |
|
recn |
|
23 |
22
|
ad2antlr |
|
24 |
|
recn |
|
25 |
24
|
ad2antrr |
|
26 |
|
gt0ne0 |
|
27 |
26
|
ad2ant2rl |
|
28 |
23 25 27
|
divcan3d |
|
29 |
21 28
|
breqtrd |
|
30 |
14 29
|
jca |
|
31 |
30
|
expr |
|
32 |
15
|
adantr |
|
33 |
|
simprl |
|
34 |
|
simplr |
|
35 |
|
simprr |
|
36 |
|
divge0 |
|
37 |
32 33 34 35 36
|
syl22anc |
|
38 |
24
|
ad2antrr |
|
39 |
22
|
ad2antlr |
|
40 |
|
gt0ne0 |
|
41 |
40
|
ad2ant2l |
|
42 |
38 39 41
|
divcan4d |
|
43 |
37 42
|
breqtrd |
|
44 |
|
ltle |
|
45 |
2 44
|
mpan |
|
46 |
45
|
imp |
|
47 |
46
|
ad2ant2l |
|
48 |
43 47
|
jca |
|
49 |
48
|
expr |
|
50 |
31 49
|
jaod |
|
51 |
10 50
|
sylbird |
|
52 |
1 51
|
syl5bi |
|
53 |
52
|
orrd |
|
54 |
53
|
ex |
|
55 |
|
le0neg1 |
|
56 |
|
le0neg1 |
|
57 |
55 56
|
bi2anan9 |
|
58 |
|
renegcl |
|
59 |
|
renegcl |
|
60 |
|
mulge0 |
|
61 |
60
|
an4s |
|
62 |
61
|
ex |
|
63 |
58 59 62
|
syl2an |
|
64 |
|
mul2neg |
|
65 |
24 22 64
|
syl2an |
|
66 |
65
|
breq2d |
|
67 |
63 66
|
sylibd |
|
68 |
57 67
|
sylbid |
|
69 |
|
mulge0 |
|
70 |
69
|
an4s |
|
71 |
70
|
ex |
|
72 |
68 71
|
jaod |
|
73 |
54 72
|
impbid |
|