Metamath Proof Explorer


Theorem mulge0b

Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013)

Ref Expression
Assertion mulge0b A B 0 A B A 0 B 0 0 A 0 B

Proof

Step Hyp Ref Expression
1 ianor ¬ A 0 B 0 ¬ A 0 ¬ B 0
2 0re 0
3 ltnle 0 A 0 < A ¬ A 0
4 2 3 mpan A 0 < A ¬ A 0
5 4 adantr A B 0 < A ¬ A 0
6 ltnle 0 B 0 < B ¬ B 0
7 2 6 mpan B 0 < B ¬ B 0
8 7 adantl A B 0 < B ¬ B 0
9 5 8 orbi12d A B 0 < A 0 < B ¬ A 0 ¬ B 0
10 9 adantr A B 0 A B 0 < A 0 < B ¬ A 0 ¬ B 0
11 ltle 0 A 0 < A 0 A
12 2 11 mpan A 0 < A 0 A
13 12 imp A 0 < A 0 A
14 13 ad2ant2rl A B 0 A B 0 < A 0 A
15 remulcl A B A B
16 15 adantr A B 0 A B 0 < A A B
17 simprl A B 0 A B 0 < A 0 A B
18 simpll A B 0 A B 0 < A A
19 simprr A B 0 A B 0 < A 0 < A
20 divge0 A B 0 A B A 0 < A 0 A B A
21 16 17 18 19 20 syl22anc A B 0 A B 0 < A 0 A B A
22 recn B B
23 22 ad2antlr A B 0 A B 0 < A B
24 recn A A
25 24 ad2antrr A B 0 A B 0 < A A
26 gt0ne0 A 0 < A A 0
27 26 ad2ant2rl A B 0 A B 0 < A A 0
28 23 25 27 divcan3d A B 0 A B 0 < A A B A = B
29 21 28 breqtrd A B 0 A B 0 < A 0 B
30 14 29 jca A B 0 A B 0 < A 0 A 0 B
31 30 expr A B 0 A B 0 < A 0 A 0 B
32 15 adantr A B 0 A B 0 < B A B
33 simprl A B 0 A B 0 < B 0 A B
34 simplr A B 0 A B 0 < B B
35 simprr A B 0 A B 0 < B 0 < B
36 divge0 A B 0 A B B 0 < B 0 A B B
37 32 33 34 35 36 syl22anc A B 0 A B 0 < B 0 A B B
38 24 ad2antrr A B 0 A B 0 < B A
39 22 ad2antlr A B 0 A B 0 < B B
40 gt0ne0 B 0 < B B 0
41 40 ad2ant2l A B 0 A B 0 < B B 0
42 38 39 41 divcan4d A B 0 A B 0 < B A B B = A
43 37 42 breqtrd A B 0 A B 0 < B 0 A
44 ltle 0 B 0 < B 0 B
45 2 44 mpan B 0 < B 0 B
46 45 imp B 0 < B 0 B
47 46 ad2ant2l A B 0 A B 0 < B 0 B
48 43 47 jca A B 0 A B 0 < B 0 A 0 B
49 48 expr A B 0 A B 0 < B 0 A 0 B
50 31 49 jaod A B 0 A B 0 < A 0 < B 0 A 0 B
51 10 50 sylbird A B 0 A B ¬ A 0 ¬ B 0 0 A 0 B
52 1 51 syl5bi A B 0 A B ¬ A 0 B 0 0 A 0 B
53 52 orrd A B 0 A B A 0 B 0 0 A 0 B
54 53 ex A B 0 A B A 0 B 0 0 A 0 B
55 le0neg1 A A 0 0 A
56 le0neg1 B B 0 0 B
57 55 56 bi2anan9 A B A 0 B 0 0 A 0 B
58 renegcl A A
59 renegcl B B
60 mulge0 A 0 A B 0 B 0 A B
61 60 an4s A B 0 A 0 B 0 A B
62 61 ex A B 0 A 0 B 0 A B
63 58 59 62 syl2an A B 0 A 0 B 0 A B
64 mul2neg A B A B = A B
65 24 22 64 syl2an A B A B = A B
66 65 breq2d A B 0 A B 0 A B
67 63 66 sylibd A B 0 A 0 B 0 A B
68 57 67 sylbid A B A 0 B 0 0 A B
69 mulge0 A 0 A B 0 B 0 A B
70 69 an4s A B 0 A 0 B 0 A B
71 70 ex A B 0 A 0 B 0 A B
72 68 71 jaod A B A 0 B 0 0 A 0 B 0 A B
73 54 72 impbid A B 0 A B A 0 B 0 0 A 0 B