Metamath Proof Explorer


Theorem mulgfn

Description: Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015) (Revised by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses mulgfn.b B = Base G
mulgfn.t · ˙ = G
Assertion mulgfn · ˙ Fn × B

Proof

Step Hyp Ref Expression
1 mulgfn.b B = Base G
2 mulgfn.t · ˙ = G
3 eqid + G = + G
4 eqid 0 G = 0 G
5 eqid inv g G = inv g G
6 1 3 4 5 2 mulgfval · ˙ = n , x B if n = 0 0 G if 0 < n seq 1 + G × x n inv g G seq 1 + G × x n
7 fvex 0 G V
8 fvex seq 1 + G × x n V
9 fvex inv g G seq 1 + G × x n V
10 8 9 ifex if 0 < n seq 1 + G × x n inv g G seq 1 + G × x n V
11 7 10 ifex if n = 0 0 G if 0 < n seq 1 + G × x n inv g G seq 1 + G × x n V
12 6 11 fnmpoi · ˙ Fn × B