Metamath Proof Explorer


Theorem mulgfval

Description: Group multiple (exponentiation) operation. For a shorter proof using ax-rep , see mulgfvalALT . (Contributed by Mario Carneiro, 11-Dec-2014) Remove dependency on ax-rep . (Revised by Rohan Ridenour, 17-Aug-2023)

Ref Expression
Hypotheses mulgval.b B = Base G
mulgval.p + ˙ = + G
mulgval.o 0 ˙ = 0 G
mulgval.i I = inv g G
mulgval.t · ˙ = G
Assertion mulgfval · ˙ = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n

Proof

Step Hyp Ref Expression
1 mulgval.b B = Base G
2 mulgval.p + ˙ = + G
3 mulgval.o 0 ˙ = 0 G
4 mulgval.i I = inv g G
5 mulgval.t · ˙ = G
6 eqidd w = G =
7 fveq2 w = G Base w = Base G
8 7 1 syl6eqr w = G Base w = B
9 fveq2 w = G 0 w = 0 G
10 9 3 syl6eqr w = G 0 w = 0 ˙
11 fvex + w V
12 1z 1
13 11 12 seqexw seq 1 + w × x V
14 13 a1i w = G seq 1 + w × x V
15 id s = seq 1 + w × x s = seq 1 + w × x
16 fveq2 w = G + w = + G
17 16 2 syl6eqr w = G + w = + ˙
18 17 seqeq2d w = G seq 1 + w × x = seq 1 + ˙ × x
19 15 18 sylan9eqr w = G s = seq 1 + w × x s = seq 1 + ˙ × x
20 19 fveq1d w = G s = seq 1 + w × x s n = seq 1 + ˙ × x n
21 simpl w = G s = seq 1 + w × x w = G
22 21 fveq2d w = G s = seq 1 + w × x inv g w = inv g G
23 22 4 syl6eqr w = G s = seq 1 + w × x inv g w = I
24 19 fveq1d w = G s = seq 1 + w × x s n = seq 1 + ˙ × x n
25 23 24 fveq12d w = G s = seq 1 + w × x inv g w s n = I seq 1 + ˙ × x n
26 20 25 ifeq12d w = G s = seq 1 + w × x if 0 < n s n inv g w s n = if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
27 14 26 csbied w = G seq 1 + w × x / s if 0 < n s n inv g w s n = if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
28 10 27 ifeq12d w = G if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n = if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
29 6 8 28 mpoeq123dv w = G n , x Base w if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
30 df-mulg 𝑔 = w V n , x Base w if n = 0 0 w seq 1 + w × x / s if 0 < n s n inv g w s n
31 zex V
32 1 fvexi B V
33 snex 0 ˙ V
34 2 fvexi + ˙ V
35 34 rnex ran + ˙ V
36 35 32 unex ran + ˙ B V
37 4 fvexi I V
38 37 rnex ran I V
39 p0ex V
40 38 39 unex ran I V
41 36 40 unex ran + ˙ B ran I V
42 33 41 unex 0 ˙ ran + ˙ B ran I V
43 ssun1 0 ˙ 0 ˙ ran + ˙ B ran I
44 3 fvexi 0 ˙ V
45 44 snid 0 ˙ 0 ˙
46 43 45 sselii 0 ˙ 0 ˙ ran + ˙ B ran I
47 46 a1i n x B 0 ˙ 0 ˙ ran + ˙ B ran I
48 ssun2 B ran + ˙ B
49 ssun1 ran + ˙ B ran + ˙ B ran I
50 48 49 sstri B ran + ˙ B ran I
51 ssun2 ran + ˙ B ran I 0 ˙ ran + ˙ B ran I
52 50 51 sstri B 0 ˙ ran + ˙ B ran I
53 fveq2 n = 1 seq 1 + ˙ × x n = seq 1 + ˙ × x 1
54 53 adantl x B n = 1 seq 1 + ˙ × x n = seq 1 + ˙ × x 1
55 seq1 1 seq 1 + ˙ × x 1 = × x 1
56 12 55 ax-mp seq 1 + ˙ × x 1 = × x 1
57 1nn 1
58 vex x V
59 58 fvconst2 1 × x 1 = x
60 57 59 ax-mp × x 1 = x
61 60 eleq1i × x 1 B x B
62 61 biimpri x B × x 1 B
63 56 62 eqeltrid x B seq 1 + ˙ × x 1 B
64 63 adantr x B n = 1 seq 1 + ˙ × x 1 B
65 54 64 eqeltrd x B n = 1 seq 1 + ˙ × x n B
66 52 65 sseldi x B n = 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
67 66 ad4ant24 n x B n 1 n = 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
68 zcn n n
69 npcan1 n n - 1 + 1 = n
70 68 69 syl n n - 1 + 1 = n
71 70 fveq2d n seq 1 + ˙ × x n - 1 + 1 = seq 1 + ˙ × x n
72 71 adantr n n 1 1 seq 1 + ˙ × x n - 1 + 1 = seq 1 + ˙ × x n
73 seqp1 n 1 1 seq 1 + ˙ × x n - 1 + 1 = seq 1 + ˙ × x n 1 + ˙ × x n - 1 + 1
74 ssun1 ran + ˙ ran + ˙ B
75 ssun2 ran I
76 unss12 ran + ˙ ran + ˙ B ran I ran + ˙ ran + ˙ B ran I
77 74 75 76 mp2an ran + ˙ ran + ˙ B ran I
78 77 51 sstri ran + ˙ 0 ˙ ran + ˙ B ran I
79 df-ov seq 1 + ˙ × x n 1 + ˙ × x n - 1 + 1 = + ˙ seq 1 + ˙ × x n 1 × x n - 1 + 1
80 fvrn0 + ˙ seq 1 + ˙ × x n 1 × x n - 1 + 1 ran + ˙
81 79 80 eqeltri seq 1 + ˙ × x n 1 + ˙ × x n - 1 + 1 ran + ˙
82 78 81 sselii seq 1 + ˙ × x n 1 + ˙ × x n - 1 + 1 0 ˙ ran + ˙ B ran I
83 73 82 eqeltrdi n 1 1 seq 1 + ˙ × x n - 1 + 1 0 ˙ ran + ˙ B ran I
84 83 adantl n n 1 1 seq 1 + ˙ × x n - 1 + 1 0 ˙ ran + ˙ B ran I
85 72 84 eqeltrrd n n 1 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
86 85 ad4ant14 n x B n 1 n 1 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
87 uzm1 n 1 n = 1 n 1 1
88 87 adantl n x B n 1 n = 1 n 1 1
89 67 86 88 mpjaodan n x B n 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
90 simpr n x B ¬ n 1 ¬ n 1
91 seqfn 1 seq 1 + ˙ × x Fn 1
92 12 91 ax-mp seq 1 + ˙ × x Fn 1
93 fndm seq 1 + ˙ × x Fn 1 dom seq 1 + ˙ × x = 1
94 92 93 ax-mp dom seq 1 + ˙ × x = 1
95 94 eleq2i n dom seq 1 + ˙ × x n 1
96 90 95 sylnibr n x B ¬ n 1 ¬ n dom seq 1 + ˙ × x
97 ndmfv ¬ n dom seq 1 + ˙ × x seq 1 + ˙ × x n =
98 96 97 syl n x B ¬ n 1 seq 1 + ˙ × x n =
99 ssun2 ran I ran + ˙ B ran I
100 75 99 sstri ran + ˙ B ran I
101 100 51 sstri 0 ˙ ran + ˙ B ran I
102 0ex V
103 102 snid
104 101 103 sselii 0 ˙ ran + ˙ B ran I
105 104 a1i n x B ¬ n 1 0 ˙ ran + ˙ B ran I
106 98 105 eqeltrd n x B ¬ n 1 seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
107 89 106 pm2.61dan n x B seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
108 99 51 sstri ran I 0 ˙ ran + ˙ B ran I
109 fvrn0 I seq 1 + ˙ × x n ran I
110 108 109 sselii I seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
111 110 a1i n x B I seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
112 107 111 ifcld n x B if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
113 47 112 ifcld n x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
114 113 rgen2 n x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n 0 ˙ ran + ˙ B ran I
115 31 32 42 114 mpoexw n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
116 29 30 115 fvmpt G V G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
117 fvprc ¬ G V G =
118 eqid n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
119 fvex seq 1 + ˙ × x n V
120 fvex I seq 1 + ˙ × x n V
121 119 120 ifex if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
122 44 121 ifex if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n V
123 118 122 fnmpoi n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn × B
124 fvprc ¬ G V Base G =
125 1 124 syl5eq ¬ G V B =
126 125 xpeq2d ¬ G V × B = ×
127 xp0 × =
128 126 127 syl6eq ¬ G V × B =
129 128 fneq2d ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn × B n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn
130 123 129 mpbii ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn
131 fn0 n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n Fn n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n =
132 130 131 sylib ¬ G V n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n =
133 117 132 eqtr4d ¬ G V G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
134 116 133 pm2.61i G = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n
135 5 134 eqtri · ˙ = n , x B if n = 0 0 ˙ if 0 < n seq 1 + ˙ × x n I seq 1 + ˙ × x n