Metamath Proof Explorer


Theorem mulgfvi

Description: The group multiple operation is compatible with identity-function protection. (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis mulgfvi.t · ˙ = G
Assertion mulgfvi · ˙ = I G

Proof

Step Hyp Ref Expression
1 mulgfvi.t · ˙ = G
2 fvi G V I G = G
3 2 eqcomd G V G = I G
4 3 fveq2d G V G = I G
5 fvprc ¬ G V G =
6 fvprc ¬ G V I G =
7 6 fveq2d ¬ G V I G =
8 base0 = Base
9 eqid =
10 8 9 mulgfn Fn ×
11 xp0 × =
12 11 fneq2i Fn × Fn
13 10 12 mpbi Fn
14 fn0 Fn =
15 13 14 mpbi =
16 7 15 eqtrdi ¬ G V I G =
17 5 16 eqtr4d ¬ G V G = I G
18 4 17 pm2.61i G = I G
19 1 18 eqtri · ˙ = I G