| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulginvcom.b |
|
| 2 |
|
mulginvcom.t |
|
| 3 |
|
mulginvcom.i |
|
| 4 |
|
oveq1 |
|
| 5 |
|
fvoveq1 |
|
| 6 |
4 5
|
eqeq12d |
|
| 7 |
|
oveq1 |
|
| 8 |
|
fvoveq1 |
|
| 9 |
7 8
|
eqeq12d |
|
| 10 |
|
oveq1 |
|
| 11 |
|
fvoveq1 |
|
| 12 |
10 11
|
eqeq12d |
|
| 13 |
|
oveq1 |
|
| 14 |
|
fvoveq1 |
|
| 15 |
13 14
|
eqeq12d |
|
| 16 |
|
oveq1 |
|
| 17 |
|
fvoveq1 |
|
| 18 |
16 17
|
eqeq12d |
|
| 19 |
|
eqid |
|
| 20 |
19 3
|
grpinvid |
|
| 21 |
20
|
eqcomd |
|
| 22 |
21
|
adantr |
|
| 23 |
1 3
|
grpinvcl |
|
| 24 |
1 19 2
|
mulg0 |
|
| 25 |
23 24
|
syl |
|
| 26 |
1 19 2
|
mulg0 |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
fveq2d |
|
| 29 |
22 25 28
|
3eqtr4d |
|
| 30 |
|
oveq2 |
|
| 31 |
30
|
adantl |
|
| 32 |
|
grpmnd |
|
| 33 |
32
|
3ad2ant1 |
|
| 34 |
|
simp2 |
|
| 35 |
23
|
3adant2 |
|
| 36 |
|
eqid |
|
| 37 |
1 2 36
|
mulgnn0p1 |
|
| 38 |
33 34 35 37
|
syl3anc |
|
| 39 |
|
simp1 |
|
| 40 |
|
nn0z |
|
| 41 |
40
|
3ad2ant2 |
|
| 42 |
1 2 36
|
mulgaddcom |
|
| 43 |
39 41 35 42
|
syl3anc |
|
| 44 |
38 43
|
eqtrd |
|
| 45 |
44
|
adantr |
|
| 46 |
1 2 36
|
mulgnn0p1 |
|
| 47 |
32 46
|
syl3an1 |
|
| 48 |
47
|
fveq2d |
|
| 49 |
1 2
|
mulgcl |
|
| 50 |
40 49
|
syl3an2 |
|
| 51 |
1 36 3
|
grpinvadd |
|
| 52 |
50 51
|
syld3an2 |
|
| 53 |
48 52
|
eqtrd |
|
| 54 |
53
|
adantr |
|
| 55 |
31 45 54
|
3eqtr4d |
|
| 56 |
55
|
3exp1 |
|
| 57 |
56
|
com23 |
|
| 58 |
57
|
imp |
|
| 59 |
|
nnz |
|
| 60 |
23
|
3adant2 |
|
| 61 |
1 2 3
|
mulgneg |
|
| 62 |
60 61
|
syld3an3 |
|
| 63 |
62
|
adantr |
|
| 64 |
1 2 3
|
mulgneg |
|
| 65 |
64
|
adantr |
|
| 66 |
|
simpr |
|
| 67 |
65 66
|
eqtr4d |
|
| 68 |
67
|
fveq2d |
|
| 69 |
63 68
|
eqtr4d |
|
| 70 |
69
|
3exp1 |
|
| 71 |
70
|
com23 |
|
| 72 |
71
|
imp |
|
| 73 |
59 72
|
syl5 |
|
| 74 |
6 9 12 15 18 29 58 73
|
zindd |
|
| 75 |
74
|
ex |
|
| 76 |
75
|
com23 |
|
| 77 |
76
|
3imp |
|