Metamath Proof Explorer


Theorem mulginvinv

Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)

Ref Expression
Hypotheses mulginvcom.b B = Base G
mulginvcom.t · ˙ = G
mulginvcom.i I = inv g G
Assertion mulginvinv G Grp N X B I N · ˙ I X = N · ˙ X

Proof

Step Hyp Ref Expression
1 mulginvcom.b B = Base G
2 mulginvcom.t · ˙ = G
3 mulginvcom.i I = inv g G
4 1 3 grpinvcl G Grp X B I X B
5 4 3adant2 G Grp N X B I X B
6 1 2 3 mulginvcom G Grp N I X B N · ˙ I I X = I N · ˙ I X
7 5 6 syld3an3 G Grp N X B N · ˙ I I X = I N · ˙ I X
8 1 3 grpinvinv G Grp X B I I X = X
9 8 3adant2 G Grp N X B I I X = X
10 9 oveq2d G Grp N X B N · ˙ I I X = N · ˙ X
11 7 10 eqtr3d G Grp N X B I N · ˙ I X = N · ˙ X