Metamath Proof Explorer


Theorem mulgm1

Description: Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 20-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
mulgneg.i I = inv g G
Assertion mulgm1 G Grp X B -1 · ˙ X = I X

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 mulgneg.i I = inv g G
4 1z 1
5 1 2 3 mulgneg G Grp 1 X B -1 · ˙ X = I 1 · ˙ X
6 4 5 mp3an2 G Grp X B -1 · ˙ X = I 1 · ˙ X
7 1 2 mulg1 X B 1 · ˙ X = X
8 7 adantl G Grp X B 1 · ˙ X = X
9 8 fveq2d G Grp X B I 1 · ˙ X = I X
10 6 9 eqtrd G Grp X B -1 · ˙ X = I X