Step |
Hyp |
Ref |
Expression |
1 |
|
mulgmodid.b |
|
2 |
|
mulgmodid.o |
|
3 |
|
mulgmodid.t |
|
4 |
|
zre |
|
5 |
|
nnrp |
|
6 |
|
modval |
|
7 |
4 5 6
|
syl2an |
|
8 |
7
|
3ad2ant2 |
|
9 |
8
|
oveq1d |
|
10 |
|
zcn |
|
11 |
10
|
adantr |
|
12 |
|
nnz |
|
13 |
12
|
adantl |
|
14 |
|
nnre |
|
15 |
|
nnne0 |
|
16 |
|
redivcl |
|
17 |
4 14 15 16
|
syl3an |
|
18 |
17
|
3anidm23 |
|
19 |
18
|
flcld |
|
20 |
13 19
|
zmulcld |
|
21 |
20
|
zcnd |
|
22 |
11 21
|
negsubd |
|
23 |
22
|
3ad2ant2 |
|
24 |
23
|
oveq1d |
|
25 |
|
simp1 |
|
26 |
|
simpl |
|
27 |
26
|
3ad2ant2 |
|
28 |
13
|
3ad2ant2 |
|
29 |
19
|
3ad2ant2 |
|
30 |
28 29
|
zmulcld |
|
31 |
30
|
znegcld |
|
32 |
|
simpl |
|
33 |
32
|
3ad2ant3 |
|
34 |
|
eqid |
|
35 |
1 3 34
|
mulgdir |
|
36 |
25 27 31 33 35
|
syl13anc |
|
37 |
9 24 36
|
3eqtr2d |
|
38 |
|
nncn |
|
39 |
38
|
adantl |
|
40 |
19
|
zcnd |
|
41 |
39 40
|
mulneg2d |
|
42 |
41
|
3ad2ant2 |
|
43 |
42
|
oveq1d |
|
44 |
18
|
3ad2ant2 |
|
45 |
44
|
flcld |
|
46 |
45
|
znegcld |
|
47 |
1 3
|
mulgassr |
|
48 |
25 46 28 33 47
|
syl13anc |
|
49 |
|
oveq2 |
|
50 |
49
|
adantl |
|
51 |
50
|
3ad2ant3 |
|
52 |
1 3 2
|
mulgz |
|
53 |
25 46 52
|
syl2anc |
|
54 |
48 51 53
|
3eqtrd |
|
55 |
43 54
|
eqtr3d |
|
56 |
55
|
oveq2d |
|
57 |
|
id |
|
58 |
1 3
|
mulgcl |
|
59 |
57 26 32 58
|
syl3an |
|
60 |
1 34 2
|
grprid |
|
61 |
25 59 60
|
syl2anc |
|
62 |
37 56 61
|
3eqtrd |
|