Metamath Proof Explorer


Theorem mulgmodid

Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgmodid.b B=BaseG
mulgmodid.o 0˙=0G
mulgmodid.t ·˙=G
Assertion mulgmodid GGrpNMXBM·˙X=0˙NmodM·˙X=N·˙X

Proof

Step Hyp Ref Expression
1 mulgmodid.b B=BaseG
2 mulgmodid.o 0˙=0G
3 mulgmodid.t ·˙=G
4 zre NN
5 nnrp MM+
6 modval NM+NmodM=NMNM
7 4 5 6 syl2an NMNmodM=NMNM
8 7 3ad2ant2 GGrpNMXBM·˙X=0˙NmodM=NMNM
9 8 oveq1d GGrpNMXBM·˙X=0˙NmodM·˙X=NMNM·˙X
10 zcn NN
11 10 adantr NMN
12 nnz MM
13 12 adantl NMM
14 nnre MM
15 nnne0 MM0
16 redivcl NMM0NM
17 4 14 15 16 syl3an NMMNM
18 17 3anidm23 NMNM
19 18 flcld NMNM
20 13 19 zmulcld NMMNM
21 20 zcnd NMMNM
22 11 21 negsubd NMN+MNM=NMNM
23 22 3ad2ant2 GGrpNMXBM·˙X=0˙N+MNM=NMNM
24 23 oveq1d GGrpNMXBM·˙X=0˙N+MNM·˙X=NMNM·˙X
25 simp1 GGrpNMXBM·˙X=0˙GGrp
26 simpl NMN
27 26 3ad2ant2 GGrpNMXBM·˙X=0˙N
28 13 3ad2ant2 GGrpNMXBM·˙X=0˙M
29 19 3ad2ant2 GGrpNMXBM·˙X=0˙NM
30 28 29 zmulcld GGrpNMXBM·˙X=0˙MNM
31 30 znegcld GGrpNMXBM·˙X=0˙MNM
32 simpl XBM·˙X=0˙XB
33 32 3ad2ant3 GGrpNMXBM·˙X=0˙XB
34 eqid +G=+G
35 1 3 34 mulgdir GGrpNMNMXBN+MNM·˙X=N·˙X+GMNM·˙X
36 25 27 31 33 35 syl13anc GGrpNMXBM·˙X=0˙N+MNM·˙X=N·˙X+GMNM·˙X
37 9 24 36 3eqtr2d GGrpNMXBM·˙X=0˙NmodM·˙X=N·˙X+GMNM·˙X
38 nncn MM
39 38 adantl NMM
40 19 zcnd NMNM
41 39 40 mulneg2d NMMNM=MNM
42 41 3ad2ant2 GGrpNMXBM·˙X=0˙MNM=MNM
43 42 oveq1d GGrpNMXBM·˙X=0˙MNM·˙X=MNM·˙X
44 18 3ad2ant2 GGrpNMXBM·˙X=0˙NM
45 44 flcld GGrpNMXBM·˙X=0˙NM
46 45 znegcld GGrpNMXBM·˙X=0˙NM
47 1 3 mulgassr GGrpNMMXBMNM·˙X=NM·˙M·˙X
48 25 46 28 33 47 syl13anc GGrpNMXBM·˙X=0˙MNM·˙X=NM·˙M·˙X
49 oveq2 M·˙X=0˙NM·˙M·˙X=NM·˙0˙
50 49 adantl XBM·˙X=0˙NM·˙M·˙X=NM·˙0˙
51 50 3ad2ant3 GGrpNMXBM·˙X=0˙NM·˙M·˙X=NM·˙0˙
52 1 3 2 mulgz GGrpNMNM·˙0˙=0˙
53 25 46 52 syl2anc GGrpNMXBM·˙X=0˙NM·˙0˙=0˙
54 48 51 53 3eqtrd GGrpNMXBM·˙X=0˙MNM·˙X=0˙
55 43 54 eqtr3d GGrpNMXBM·˙X=0˙MNM·˙X=0˙
56 55 oveq2d GGrpNMXBM·˙X=0˙N·˙X+GMNM·˙X=N·˙X+G0˙
57 id GGrpGGrp
58 1 3 mulgcl GGrpNXBN·˙XB
59 57 26 32 58 syl3an GGrpNMXBM·˙X=0˙N·˙XB
60 1 34 2 grprid GGrpN·˙XBN·˙X+G0˙=N·˙X
61 25 59 60 syl2anc GGrpNMXBM·˙X=0˙N·˙X+G0˙=N·˙X
62 37 56 61 3eqtrd GGrpNMXBM·˙X=0˙NmodM·˙X=N·˙X