Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnncl.b |
|
2 |
|
mulgnncl.t |
|
3 |
|
mulgneg.i |
|
4 |
|
elnn0 |
|
5 |
|
simpr |
|
6 |
|
simpl3 |
|
7 |
1 2 3
|
mulgnegnn |
|
8 |
5 6 7
|
syl2anc |
|
9 |
|
simpl1 |
|
10 |
|
eqid |
|
11 |
10 3
|
grpinvid |
|
12 |
9 11
|
syl |
|
13 |
|
simpr |
|
14 |
13
|
oveq1d |
|
15 |
|
simpl3 |
|
16 |
1 10 2
|
mulg0 |
|
17 |
15 16
|
syl |
|
18 |
14 17
|
eqtrd |
|
19 |
18
|
fveq2d |
|
20 |
13
|
negeqd |
|
21 |
|
neg0 |
|
22 |
20 21
|
eqtrdi |
|
23 |
22
|
oveq1d |
|
24 |
23 17
|
eqtrd |
|
25 |
12 19 24
|
3eqtr4rd |
|
26 |
8 25
|
jaodan |
|
27 |
4 26
|
sylan2b |
|
28 |
|
simpl1 |
|
29 |
|
simprr |
|
30 |
29
|
nnzd |
|
31 |
|
simpl3 |
|
32 |
1 2
|
mulgcl |
|
33 |
28 30 31 32
|
syl3anc |
|
34 |
1 3
|
grpinvinv |
|
35 |
28 33 34
|
syl2anc |
|
36 |
1 2 3
|
mulgnegnn |
|
37 |
29 31 36
|
syl2anc |
|
38 |
|
simprl |
|
39 |
38
|
recnd |
|
40 |
39
|
negnegd |
|
41 |
40
|
oveq1d |
|
42 |
37 41
|
eqtr3d |
|
43 |
42
|
fveq2d |
|
44 |
35 43
|
eqtr3d |
|
45 |
|
simp2 |
|
46 |
|
elznn0nn |
|
47 |
45 46
|
sylib |
|
48 |
27 44 47
|
mpjaodan |
|