| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgneg2.b |  | 
						
							| 2 |  | mulgneg2.m |  | 
						
							| 3 |  | mulgneg2.i |  | 
						
							| 4 |  | negeq |  | 
						
							| 5 |  | neg0 |  | 
						
							| 6 | 4 5 | eqtrdi |  | 
						
							| 7 | 6 | oveq1d |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 | 7 8 | eqeq12d |  | 
						
							| 10 |  | negeq |  | 
						
							| 11 | 10 | oveq1d |  | 
						
							| 12 |  | oveq1 |  | 
						
							| 13 | 11 12 | eqeq12d |  | 
						
							| 14 |  | negeq |  | 
						
							| 15 | 14 | oveq1d |  | 
						
							| 16 |  | oveq1 |  | 
						
							| 17 | 15 16 | eqeq12d |  | 
						
							| 18 |  | negeq |  | 
						
							| 19 | 18 | oveq1d |  | 
						
							| 20 |  | oveq1 |  | 
						
							| 21 | 19 20 | eqeq12d |  | 
						
							| 22 |  | negeq |  | 
						
							| 23 | 22 | oveq1d |  | 
						
							| 24 |  | oveq1 |  | 
						
							| 25 | 23 24 | eqeq12d |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 | 1 26 2 | mulg0 |  | 
						
							| 28 | 27 | adantl |  | 
						
							| 29 | 1 3 | grpinvcl |  | 
						
							| 30 | 1 26 2 | mulg0 |  | 
						
							| 31 | 29 30 | syl |  | 
						
							| 32 | 28 31 | eqtr4d |  | 
						
							| 33 |  | oveq1 |  | 
						
							| 34 |  | nn0cn |  | 
						
							| 35 | 34 | adantl |  | 
						
							| 36 |  | ax-1cn |  | 
						
							| 37 |  | negdi |  | 
						
							| 38 | 35 36 37 | sylancl |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 |  | simpll |  | 
						
							| 41 |  | nn0negz |  | 
						
							| 42 | 41 | adantl |  | 
						
							| 43 |  | 1z |  | 
						
							| 44 |  | znegcl |  | 
						
							| 45 | 43 44 | mp1i |  | 
						
							| 46 |  | simplr |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 1 2 47 | mulgdir |  | 
						
							| 49 | 40 42 45 46 48 | syl13anc |  | 
						
							| 50 | 1 2 3 | mulgm1 |  | 
						
							| 51 | 50 | adantr |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 39 49 52 | 3eqtrd |  | 
						
							| 54 |  | grpmnd |  | 
						
							| 55 | 54 | ad2antrr |  | 
						
							| 56 |  | simpr |  | 
						
							| 57 | 29 | adantr |  | 
						
							| 58 | 1 2 47 | mulgnn0p1 |  | 
						
							| 59 | 55 56 57 58 | syl3anc |  | 
						
							| 60 | 53 59 | eqeq12d |  | 
						
							| 61 | 33 60 | imbitrrid |  | 
						
							| 62 | 61 | ex |  | 
						
							| 63 |  | fveq2 |  | 
						
							| 64 |  | simpll |  | 
						
							| 65 |  | nnnegz |  | 
						
							| 66 | 65 | adantl |  | 
						
							| 67 |  | simplr |  | 
						
							| 68 | 1 2 3 | mulgneg |  | 
						
							| 69 | 64 66 67 68 | syl3anc |  | 
						
							| 70 |  | id |  | 
						
							| 71 | 1 2 3 | mulgnegnn |  | 
						
							| 72 | 70 29 71 | syl2anr |  | 
						
							| 73 | 69 72 | eqeq12d |  | 
						
							| 74 | 63 73 | imbitrrid |  | 
						
							| 75 | 74 | ex |  | 
						
							| 76 | 9 13 17 21 25 32 62 75 | zindd |  | 
						
							| 77 | 76 | 3impia |  | 
						
							| 78 | 77 | 3com23 |  |