Metamath Proof Explorer


Theorem mulgneg2

Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgneg2.b B=BaseG
mulgneg2.m ·˙=G
mulgneg2.i I=invgG
Assertion mulgneg2 GGrpNXB- N·˙X=N·˙IX

Proof

Step Hyp Ref Expression
1 mulgneg2.b B=BaseG
2 mulgneg2.m ·˙=G
3 mulgneg2.i I=invgG
4 negeq x=0x=0
5 neg0 0=0
6 4 5 eqtrdi x=0x=0
7 6 oveq1d x=0x·˙X=0·˙X
8 oveq1 x=0x·˙IX=0·˙IX
9 7 8 eqeq12d x=0x·˙X=x·˙IX0·˙X=0·˙IX
10 negeq x=nx=n
11 10 oveq1d x=nx·˙X=n·˙X
12 oveq1 x=nx·˙IX=n·˙IX
13 11 12 eqeq12d x=nx·˙X=x·˙IXn·˙X=n·˙IX
14 negeq x=n+1x=n+1
15 14 oveq1d x=n+1x·˙X=n+1·˙X
16 oveq1 x=n+1x·˙IX=n+1·˙IX
17 15 16 eqeq12d x=n+1x·˙X=x·˙IXn+1·˙X=n+1·˙IX
18 negeq x=nx=n
19 18 oveq1d x=nx·˙X=n·˙X
20 oveq1 x=nx·˙IX=n·˙IX
21 19 20 eqeq12d x=nx·˙X=x·˙IXn·˙X=n·˙IX
22 negeq x=Nx=N
23 22 oveq1d x=Nx·˙X=- N·˙X
24 oveq1 x=Nx·˙IX=N·˙IX
25 23 24 eqeq12d x=Nx·˙X=x·˙IX- N·˙X=N·˙IX
26 eqid 0G=0G
27 1 26 2 mulg0 XB0·˙X=0G
28 27 adantl GGrpXB0·˙X=0G
29 1 3 grpinvcl GGrpXBIXB
30 1 26 2 mulg0 IXB0·˙IX=0G
31 29 30 syl GGrpXB0·˙IX=0G
32 28 31 eqtr4d GGrpXB0·˙X=0·˙IX
33 oveq1 n·˙X=n·˙IXn·˙X+GIX=n·˙IX+GIX
34 nn0cn n0n
35 34 adantl GGrpXBn0n
36 ax-1cn 1
37 negdi n1n+1=-n+-1
38 35 36 37 sylancl GGrpXBn0n+1=-n+-1
39 38 oveq1d GGrpXBn0n+1·˙X=-n+-1·˙X
40 simpll GGrpXBn0GGrp
41 nn0negz n0n
42 41 adantl GGrpXBn0n
43 1z 1
44 znegcl 11
45 43 44 mp1i GGrpXBn01
46 simplr GGrpXBn0XB
47 eqid +G=+G
48 1 2 47 mulgdir GGrpn1XB-n+-1·˙X=n·˙X+G-1·˙X
49 40 42 45 46 48 syl13anc GGrpXBn0-n+-1·˙X=n·˙X+G-1·˙X
50 1 2 3 mulgm1 GGrpXB-1·˙X=IX
51 50 adantr GGrpXBn0-1·˙X=IX
52 51 oveq2d GGrpXBn0n·˙X+G-1·˙X=n·˙X+GIX
53 39 49 52 3eqtrd GGrpXBn0n+1·˙X=n·˙X+GIX
54 grpmnd GGrpGMnd
55 54 ad2antrr GGrpXBn0GMnd
56 simpr GGrpXBn0n0
57 29 adantr GGrpXBn0IXB
58 1 2 47 mulgnn0p1 GMndn0IXBn+1·˙IX=n·˙IX+GIX
59 55 56 57 58 syl3anc GGrpXBn0n+1·˙IX=n·˙IX+GIX
60 53 59 eqeq12d GGrpXBn0n+1·˙X=n+1·˙IXn·˙X+GIX=n·˙IX+GIX
61 33 60 imbitrrid GGrpXBn0n·˙X=n·˙IXn+1·˙X=n+1·˙IX
62 61 ex GGrpXBn0n·˙X=n·˙IXn+1·˙X=n+1·˙IX
63 fveq2 n·˙X=n·˙IXIn·˙X=In·˙IX
64 simpll GGrpXBnGGrp
65 nnnegz nn
66 65 adantl GGrpXBnn
67 simplr GGrpXBnXB
68 1 2 3 mulgneg GGrpnXBn·˙X=In·˙X
69 64 66 67 68 syl3anc GGrpXBnn·˙X=In·˙X
70 id nn
71 1 2 3 mulgnegnn nIXBn·˙IX=In·˙IX
72 70 29 71 syl2anr GGrpXBnn·˙IX=In·˙IX
73 69 72 eqeq12d GGrpXBnn·˙X=n·˙IXIn·˙X=In·˙IX
74 63 73 imbitrrid GGrpXBnn·˙X=n·˙IXn·˙X=n·˙IX
75 74 ex GGrpXBnn·˙X=n·˙IXn·˙X=n·˙IX
76 9 13 17 21 25 32 62 75 zindd GGrpXBN- N·˙X=N·˙IX
77 76 3impia GGrpXBN- N·˙X=N·˙IX
78 77 3com23 GGrpNXB- N·˙X=N·˙IX