Metamath Proof Explorer


Theorem mulgnegnn

Description: Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg1.b B = Base G
mulg1.m · ˙ = G
mulgnegnn.i I = inv g G
Assertion mulgnegnn N X B -N · ˙ X = I N · ˙ X

Proof

Step Hyp Ref Expression
1 mulg1.b B = Base G
2 mulg1.m · ˙ = G
3 mulgnegnn.i I = inv g G
4 nncn N N
5 4 negnegd N -N = N
6 5 adantr N X B -N = N
7 6 fveq2d N X B seq 1 + G × X -N = seq 1 + G × X N
8 7 fveq2d N X B I seq 1 + G × X -N = I seq 1 + G × X N
9 nnnegz N N
10 eqid + G = + G
11 eqid 0 G = 0 G
12 eqid seq 1 + G × X = seq 1 + G × X
13 1 10 11 3 2 12 mulgval N X B -N · ˙ X = if N = 0 0 G if 0 < N seq 1 + G × X N I seq 1 + G × X -N
14 9 13 sylan N X B -N · ˙ X = if N = 0 0 G if 0 < N seq 1 + G × X N I seq 1 + G × X -N
15 nnne0 N N 0
16 negeq0 N N = 0 N = 0
17 16 necon3abid N N 0 ¬ N = 0
18 4 17 syl N N 0 ¬ N = 0
19 15 18 mpbid N ¬ N = 0
20 19 iffalsed N if N = 0 0 G if 0 < N seq 1 + G × X N I seq 1 + G × X -N = if 0 < N seq 1 + G × X N I seq 1 + G × X -N
21 nnre N N
22 21 renegcld N N
23 nngt0 N 0 < N
24 21 lt0neg2d N 0 < N N < 0
25 23 24 mpbid N N < 0
26 0re 0
27 ltnsym N 0 N < 0 ¬ 0 < N
28 26 27 mpan2 N N < 0 ¬ 0 < N
29 22 25 28 sylc N ¬ 0 < N
30 29 iffalsed N if 0 < N seq 1 + G × X N I seq 1 + G × X -N = I seq 1 + G × X -N
31 20 30 eqtrd N if N = 0 0 G if 0 < N seq 1 + G × X N I seq 1 + G × X -N = I seq 1 + G × X -N
32 31 adantr N X B if N = 0 0 G if 0 < N seq 1 + G × X N I seq 1 + G × X -N = I seq 1 + G × X -N
33 14 32 eqtrd N X B -N · ˙ X = I seq 1 + G × X -N
34 1 10 2 12 mulgnn N X B N · ˙ X = seq 1 + G × X N
35 34 fveq2d N X B I N · ˙ X = I seq 1 + G × X N
36 8 33 35 3eqtr4d N X B -N · ˙ X = I N · ˙ X