Metamath Proof Explorer


Theorem mulgnn

Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnn.b B = Base G
mulgnn.p + ˙ = + G
mulgnn.t · ˙ = G
mulgnn.s S = seq 1 + ˙ × X
Assertion mulgnn N X B N · ˙ X = S N

Proof

Step Hyp Ref Expression
1 mulgnn.b B = Base G
2 mulgnn.p + ˙ = + G
3 mulgnn.t · ˙ = G
4 mulgnn.s S = seq 1 + ˙ × X
5 nnz N N
6 eqid 0 G = 0 G
7 eqid inv g G = inv g G
8 1 2 6 7 3 4 mulgval N X B N · ˙ X = if N = 0 0 G if 0 < N S N inv g G S N
9 5 8 sylan N X B N · ˙ X = if N = 0 0 G if 0 < N S N inv g G S N
10 nnne0 N N 0
11 10 neneqd N ¬ N = 0
12 11 iffalsed N if N = 0 0 G if 0 < N S N inv g G S N = if 0 < N S N inv g G S N
13 nngt0 N 0 < N
14 13 iftrued N if 0 < N S N inv g G S N = S N
15 12 14 eqtrd N if N = 0 0 G if 0 < N S N inv g G S N = S N
16 15 adantr N X B if N = 0 0 G if 0 < N S N inv g G S N = S N
17 9 16 eqtrd N X B N · ˙ X = S N