Metamath Proof Explorer


Theorem mulgnn0ass

Description: Product of group multiples, generalized to NN0 . (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgass.b B = Base G
mulgass.t · ˙ = G
Assertion mulgnn0ass G Mnd M 0 N 0 X B M N · ˙ X = M · ˙ N · ˙ X

Proof

Step Hyp Ref Expression
1 mulgass.b B = Base G
2 mulgass.t · ˙ = G
3 mndsgrp G Mnd G Smgrp
4 3 adantr G Mnd M 0 N 0 X B G Smgrp
5 4 adantr G Mnd M 0 N 0 X B M N G Smgrp
6 simprl G Mnd M 0 N 0 X B M N M
7 simprr G Mnd M 0 N 0 X B M N N
8 simpr3 G Mnd M 0 N 0 X B X B
9 8 adantr G Mnd M 0 N 0 X B M N X B
10 1 2 mulgnnass G Smgrp M N X B M N · ˙ X = M · ˙ N · ˙ X
11 5 6 7 9 10 syl13anc G Mnd M 0 N 0 X B M N M N · ˙ X = M · ˙ N · ˙ X
12 11 expr G Mnd M 0 N 0 X B M N M N · ˙ X = M · ˙ N · ˙ X
13 eqid 0 G = 0 G
14 1 13 2 mulg0 X B 0 · ˙ X = 0 G
15 8 14 syl G Mnd M 0 N 0 X B 0 · ˙ X = 0 G
16 simpr1 G Mnd M 0 N 0 X B M 0
17 16 nn0cnd G Mnd M 0 N 0 X B M
18 17 mul01d G Mnd M 0 N 0 X B M 0 = 0
19 18 oveq1d G Mnd M 0 N 0 X B M 0 · ˙ X = 0 · ˙ X
20 15 oveq2d G Mnd M 0 N 0 X B M · ˙ 0 · ˙ X = M · ˙ 0 G
21 1 2 13 mulgnn0z G Mnd M 0 M · ˙ 0 G = 0 G
22 21 3ad2antr1 G Mnd M 0 N 0 X B M · ˙ 0 G = 0 G
23 20 22 eqtrd G Mnd M 0 N 0 X B M · ˙ 0 · ˙ X = 0 G
24 15 19 23 3eqtr4d G Mnd M 0 N 0 X B M 0 · ˙ X = M · ˙ 0 · ˙ X
25 24 adantr G Mnd M 0 N 0 X B M M 0 · ˙ X = M · ˙ 0 · ˙ X
26 oveq2 N = 0 M N = M 0
27 26 oveq1d N = 0 M N · ˙ X = M 0 · ˙ X
28 oveq1 N = 0 N · ˙ X = 0 · ˙ X
29 28 oveq2d N = 0 M · ˙ N · ˙ X = M · ˙ 0 · ˙ X
30 27 29 eqeq12d N = 0 M N · ˙ X = M · ˙ N · ˙ X M 0 · ˙ X = M · ˙ 0 · ˙ X
31 25 30 syl5ibrcom G Mnd M 0 N 0 X B M N = 0 M N · ˙ X = M · ˙ N · ˙ X
32 simpr2 G Mnd M 0 N 0 X B N 0
33 elnn0 N 0 N N = 0
34 32 33 sylib G Mnd M 0 N 0 X B N N = 0
35 34 adantr G Mnd M 0 N 0 X B M N N = 0
36 12 31 35 mpjaod G Mnd M 0 N 0 X B M M N · ˙ X = M · ˙ N · ˙ X
37 36 ex G Mnd M 0 N 0 X B M M N · ˙ X = M · ˙ N · ˙ X
38 32 nn0cnd G Mnd M 0 N 0 X B N
39 38 mul02d G Mnd M 0 N 0 X B 0 N = 0
40 39 oveq1d G Mnd M 0 N 0 X B 0 N · ˙ X = 0 · ˙ X
41 1 2 mulgnn0cl G Mnd N 0 X B N · ˙ X B
42 41 3adant3r1 G Mnd M 0 N 0 X B N · ˙ X B
43 1 13 2 mulg0 N · ˙ X B 0 · ˙ N · ˙ X = 0 G
44 42 43 syl G Mnd M 0 N 0 X B 0 · ˙ N · ˙ X = 0 G
45 15 40 44 3eqtr4d G Mnd M 0 N 0 X B 0 N · ˙ X = 0 · ˙ N · ˙ X
46 oveq1 M = 0 M N = 0 N
47 46 oveq1d M = 0 M N · ˙ X = 0 N · ˙ X
48 oveq1 M = 0 M · ˙ N · ˙ X = 0 · ˙ N · ˙ X
49 47 48 eqeq12d M = 0 M N · ˙ X = M · ˙ N · ˙ X 0 N · ˙ X = 0 · ˙ N · ˙ X
50 45 49 syl5ibrcom G Mnd M 0 N 0 X B M = 0 M N · ˙ X = M · ˙ N · ˙ X
51 elnn0 M 0 M M = 0
52 16 51 sylib G Mnd M 0 N 0 X B M M = 0
53 37 50 52 mpjaod G Mnd M 0 N 0 X B M N · ˙ X = M · ˙ N · ˙ X