Metamath Proof Explorer


Theorem mulgnn0cl

Description: Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
Assertion mulgnn0cl G Mnd N 0 X B N · ˙ X B

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 eqid + G = + G
4 id G Mnd G Mnd
5 ssidd G Mnd B B
6 1 3 mndcl G Mnd x B y B x + G y B
7 eqid 0 G = 0 G
8 1 7 mndidcl G Mnd 0 G B
9 1 2 3 4 5 6 7 8 mulgnn0subcl G Mnd N 0 X B N · ˙ X B